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The Semantic Web

T. Berners-Lee, J. Hendler, and O. Lassila (2001). The Semantic Web.
Scientific American, May 2001, pp. 34-43.

Evolving extension of the World Wide Web
(WWW) in which WWW content can be
expressed not only in natural language, but also
in a format that can be read and used by
software agents, thus permitting them to find,
share and integrate information more easily.

Vision of the WWW as a universal medium for
data, information, and knowledge exchange.
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The Semantic Web:
layered architecture
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The Semantic Web:
layer of ontologies
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What is an ontology?

T. R. Gruber (1993). A translation approach to portable ontologies. Knowledge
Acquisition, 5(2): 199-220.

An Ontology is a

formal specification = Executable
of a shared = Group of persons
conceptualization = About concepts

of a domain of interest = Between application
and ,unique truth*
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OWL (Ontology Web Language)

£ recommendation (i.e., a standard) for Web

ontologies
http://www.w3.0rg/2004/OWL/

Developed by the W3C WebOnt Working Group
Mark-up language
compatible with RDF/XML exchange format
based on earlier languages OIL and DAML+OIL
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The Semantic Web:
Rules on top of ontologies
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SWRL (Semantic Web Rule Language)

Submitted to W3C for standardization
http://www.w3.0rg/Submission/SWRL/

Mark-up language

compatible with RDF/XML exchange format
integration of OWL and RuleML

W3C RIF (Rule Interchange Format) Working Group

@
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What the Semantic Web
can do for ML/DM

Lots and lots of tools to describe and
exchange data for later use by ML/DM
methods in a canonical way!

Using ontological structures to improve
the ML/DM tasks

Provide background knowledge to guide

ML/DM systems
See PriCKLWs@ECML/PKDD-07
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What ML/DM
can do for the Semantic Web

Learning Ontologies (even if not fully
automatic)

Learning to map between ontologies

Deep Annotation: Reconciling databases
and ontologies

Annotation by Information Extraction
Duplicate recognition
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Tutorial focus

The acquisition of ontologies and rules for the
Semantic Web is a very demanding task

The logical nature of ontology and rule
languages for the Semantic Web should not be
neglected when choosing ML/DM methods to be
applied

Inductive Logic Programming can be a source of
solutions to the Knowledge Acquisition
bottleneck of the Semantic Web

',,,.%A Dr. Francesca A. Lisi 11

Tutorial overview

Part I “Logical Foundations of Ontology
and Rule Languages for the Semantic
Web” (1h 30m)

Part I1: “Logic-based ML/DM methods
for the Semantic Web” (1h 30m)
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The Challenges of the Semantic Web
to Machine Learning and Data Mining

Part I: “Logical Foundations
of Ontology and Rule
Languages for the
Semantic Web” (1h 30m)

Part |: Overview

KR systems based on Description Logics

KR systems combining Description
Logics and Horn Clausal Logic
(fragments)
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Part |: Overview

KR systems based on Description Logics

KR systems combining Description
Logics and Horn Clausal Logic
(fragments)
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OWL

OWL provide three levels
of expressive power

All three correspond to
fragments of First Order
Logic but

OWL DL is based on a
family of fragments with
desirable computational
properties: Description
Logics!
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OWL DL

Why Description Logics?
It exploits results of 15+ years of KR&R research
Well defined (model theoretic) semantics

Formal properties well understood (complexity,
decidability)

Known reasoning algorithms
Implemented systems (highly optimised)

B csvabing FaCT++

e Yk ~1,;

;o 4
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What are Description Logics?

F. Baader et al. (2003). The Description Logic Handbook: Theory, Implementation,
Applications. Cambridge University Press, Cambridge, UK.
DLs are decidable variable-
free fragments of First
Order Logic (FOL)

Describe domain in terms of
concepts (classes), roles
(properties, relationships)
DLs and individuals

DLs provide a family of
logic based formalisms for
Knowledge Representation
and Reasoning (KR&R)

Descendants of semantic

s “networks and KL-ONE
’arti Dr. Francesca A. Lisi 18
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DL Basics

Concepts (unary predicates/formulae with one free

variable)
E.g., Person, Doctor, HappyParent, (Doctor LI Lawyer)

Roles (binary predicates/formulae with two free

variables)
E.g., hasChild, loves, (hasBrother o hasDaughter)

Individuals (constants)
E.g., John, Mary, Italy

Operators (for forming complex concepts and roles

from atomic ones) restricted so that:
Satisfiability/subsumption is decidable and, /f possible, of low
complexity

No need for explicit use of variables
Restrlcted form of Jand V

r. Francesca A. L
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The DL Family

Smallest propositionally closed DL is ALC (Schmidt-Schauss and

Smolka, 1991)
S often used for ALC extended with transitive roles (R,)

Additional letters indicate other extensions, e.g.:
‘H for role hierarchy (e.g., hasDaughter = hasChild)

O for nominals/singleton classes (e.g., {ltaly})

T for inverse roles (e.g., isChildOf = hasChild™)

N for number restrictions (e.g., =2hasChild, <3hasChild)

@ for qualified number restrictions (e.g., =2hasChild.Doctor)

F for functional number restrictions (e.g., <lhasMother)
S + role hierarchy (#) + inverse (Z) + QNR (Q) = SHIQO
SHZIOQis the basis for OWL

OWL DL = SHZQextended with nominals (i.e., SHOZQ)

OWL the ~ SHZQwith only functional restrictions (i.e., SHZF)
a,,»_i Dr. Francesca A. Lisi 20




ALC syntax

atomic concept A Human

atomic role R likes
conjunction Crb HumanrMale
disjunction CuD NiceLIRich
negation —C —Meat
existential restriction |3R.C 3hasChild.Human
value restriction VR.C VYhasChild.Nice

E.g., person all of whose children are either Doctors or have a child
who is a Doctor:

Person M YhasChild.(Doctor LI3hasChild.Doctor)

a,gi Dr. Francesca A. Lisi 21

DL Semantics

Semantics given by standard FOL model theory:

Interpretation function 7 Interpretation domain AZ

Individuals iZ € AT

John
Mary -

Doctor ~~~.__

Vehicle ___
Roles 1TC AT x AT ~

owns

e, (Lawyer M Doctor) ,-”
y’% Dr. Francesca A. Lisi 22




DL Semantics:

Unigue Names Assumption (UNA)

R. Reiter (1980). A logic for default reasoning.
Artificial Intelligence, 13:81-132.

aZ = b? if a#b

Dr. Francesca A. Lisi
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ALC semantics

atomic concept | A AlcA

atomic role R R'cA'xA'

conjunction crib |c'~D'

disjunction cub |c'uD!

negation —Cc |A\C!

existential JR.C |{x | Jy.(x,y)eR' A yeC'}
restriction

value restriction |VR.C [{x | Vy.(x,y)eR' = yeCh

Dr. Francesca A. Lisi
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DL Deduction Rules

Tableau calculus

Applies rules that correspond to DL constructors
E.g., John:(Person 11 Doctor) —, John:Person and John:Doctor

Stops when no more rules applicable or clash occurs
Clash is an obvious contradiction, e.g., A(x), 7A(x)

Some rules are nondeterministic (e.g., LJ, d)

In practice, this means search

Cycle check (blocking) often needed to ensure
termination

:,,-_i Dr. Francesca A. Lisi 25

ALC Deduction Rules

An algorithm based on tableau calculus for ALC
Tries to build a (tree) model Z for input concept C
Breaks down C syntactically, inferring constraints on
elements in 1
Applies inference rules corresponding to ALC constructors
(e.g. =)
Works non-deterministically in PSpace

Stops when a clash, i.e. a contradiction, occurs (C is
inconsistent) or no other rule can be applied (C is
consistent)

a,,»_i Dr. Francesca A. Lisi 26




Mapping DLs to FOL

Most DLs are decidable fragments of FOL
ALC is a fragment of FOL with two variables (L2)

For mapping A£c to FOL introduce:
a unary predicate A for a concept name A
a binary relation R for a role name R
Translate complex concepts C, D as follows:

t(A)=A(x) t,(A)=A(x)
t (CMD)= t(C)At (D) t,(CTD)= t,(C)At,(D)
t (CLD)= t (C)vt (D) t,(CUD)= t,(C)vt,(D)

t,(3R.C)= Fy.RxYAL(C)  t,(3R.C)=Ty.R(x,y)At,(C)
t(VR.C)= Vy.R(x,y)=t,(C) t(VR.C)= Vy.R(x,y)=1,(C)

'J@ Dr. Francesca A. Lisi

27

DL Knowledge Bases

Terminological part
U /ntensional knowledge

Knowledge Base X Ol In the form of axioms

Assertional part
U Extensional knowledge
U In the form of assertions

'ﬁ Dr. Francesca A. Lisi
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ALC Knowledge Bases:

syntax
Thox ABoXx

equality axioms concept assertions
A=C a:C
Father = john:Father
Manm3hasChild.Human

inclusion axioms role assertions
CCD <a,b>:R
dfavourite.Brewery C < john,bill>: has-child
3drinks.Beer

""i Dr. Francesca A. Lisi 29

Open World Assumption (OWA)

The information in an Abox is generally
considered to be incomplete (open world)

An Abox represents possibly infinitely
many interpretations, namely its models

Query answering requires nontrivial
reasoning

Classical negation!
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ALC Knowledge Bases:
semantics
An interpretation Z, = (AZ, .7%) satisfies

an equality axiom A=C iff AZ=CZ

an inclusion axiom CCD iff CZ < DZ
a Tbox T iff Z satisfies all axioms in 7

a concept assertion a:C iff afleC?

a role assertion <a,b>:R iff <aZ,b’>eRZ
a ABox A iff Z satisfies all assertions in A

ey,

o "a‘
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DL-based KR&R systems

Knowledge base X~ Reasoning

services

iy,

w Dr. Francesca A. Lisi
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DL-based KR&R systems:
standard reasoning tasks

Subsumption
.. of concepts C and D (CCD)

Is CZc=D7? in all interpretations Z?
.. of concepts C and D w.r.t. a TBox 7 (CC,- D)
Is C’cD? in all models Z of 7?

Consistency
.. of a concept C w.r.t. a TBox T

Is there a model 7 of Twith C%=& ?
.. of a ABox A

Is there a model Z of A?
.. of aKB (7, A)

Is there a model Z of both 7 and A?

,,,.i Dr. Francesca A. Lisi 33

DL-based KR&R systems:
standard reasoning tasks (2)

Subsumption and consistency are closely related
CC, D iff Cn—D is inconsistent w.r.t. 7

C is consistent w.r.t. Tiff not CC,AMN—-A

Algorithms for checking consistency w.r.t TBoxes suffice
Based on tableau calculus
Decidability is important
Complexity between P and ExpTime

Instance check:
.. of an individual a and a concept C w.r.t. a KB X

Is a:.C derivable from X? Or equivalently,
Is £ u{a:— C} consistent?

,,,.i Dr. Francesca A. Lisi 34




ALC-based KR&R systems:
example of instance check

>=DairyProduct=Product, product11:DairyProduct, etc.

Is productl1:Product derivable from X?
Or equivalently
Is £ U{ productll:— Product} consistent?

productll :—Product DairyProduct=Product
_ g J
'
product11:—DairyProductLProduct
—u A/
product11;—DairyProduct product11:DairyProduct
\ gl J
T

product1l: L

,,,._i Dr. Francesca A. Lisi
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DL-based KR&R systems:
non-standard reasoning tasks

Most Specific Concept (MSC)

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems. New

York: Springer.

Intuitively, the MSC of individuals in an ABox is a

concept description that represents all the properties

of the individuals including the concept assertions they

occur in and their relationship to other individuals

The existence of MSC is not guaranteed for all DLs
Approximation of MSC is possible!

However, if the MSC exists, it is uniquely determined

up to equivalence

L Dr. Francesca A. Lisi

36




DL-based KR&R systems:
non-standard reasoning tasks (2)

Least Common Subsumer (LCS)

W.W. Cohen, A. Borgida, & H. Hirsh (1992). Computing Least Common Subsumers in
Description Logics. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92),
pages 754-760. AAAI Press/MIT Press.

The LCS of a given sequence of concept descriptions is

Intuitively, a concept description that represents the properties
that all the elements of the sequence have in common

More formally, the MSC description that subsumes the given
concept descriptions
The existence of the LCS for a given sequence of
concept descriptions is not guaranteed but ..

.. if an LCS exists, then it is uniquely determined up to
equivalence
,,,,i Dr. Francesca A. Lisi 37

Back to OWL DL:

DL syntax
Constructor DL Syntax Example FOL Syntax
intersectionOf CyN...NCy, |HumannMale | Ci(z)A...ACh(x)
unionOf CiU...uCy | DoctoruLawyer | Cy(z) V...V Cn(2)
complementOf -C -Male -C(x)
oneOf {epU...U{zn} | {JOhn}u{mary} |z=21V...Ve=u,
allValuesFrom YP.C YhasChild.Doctor | Vy.P(z,y) — C(y)
someValuesFrom irC JhasChild.Lawyer | 3y.P(z,y) A C(y)
maxCardinality <nP <1lhasChild ISy P(x,y)
minCardinality >nP >2hasChild 37y P(z,y)

C is a concept (class); P is a role (property); x is an

individual name
XMLS datatypes as well as classes in YP.C and 4P.C

Rest[_i"c:;%gd form of DL gopcrete domains a8




Back to OWL DL.:
DL syntax (2)

OWL Syntax DL Syntax | Example

subClassOf C1CCy | Human C Animal M Biped
equivalentClass C1=C> | Man = HumanTri Male
subPropertyOf Py C P, | hasDaughter C hasChild
equivalentProperty | P; =P, | cost = price
transitiveProperty | PT C P | ancestort C ancestor

OWL Syntax | DL Syntax | Example

type a:C John : Happy-Father
property (a,b) : R | (John,Mary) : has-child
OWL ontology equivalent to DL KB (Thox +
Abox).

Yl Dr. Francesca A. Lisi 39
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Back to OWL DL.:
an example

Dairy products are products

<owl:Class rdf:I1D="DairyProduct>
<rdfs:subClassOf rdf:about="#Product'/>
</rdfs:subClassOf>

</owl:Class>

European customers are customers living in European countries

<owl :Class rdf:1D="EuropeanCustomer’>
<owl :equivalentClass/> )
<owl : intersectionOf rdf:BarseType=" collection">
<owl :Class _rdf:about="#Customer"/>
<owl:restriction/> )
<ow|:onPropert¥ rdfResource="“#livesiIn”/>
<owl :allValuesFrom rdf:resource="#EuropeanCountry'/>
</owl :allvaluesFrom>
</owl:restriction>
</owl : intersectionOf>
</owl :equivalentClass>

</owl :Cl as,§i> Dr. Francesca A. Lisi 40




Description Logics:
Bibliography (only the essential)

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider
(2003). The Description Logic Handbook: Theory, Implementation,
Applications. Cambridge University Press, Cambridge, UK.

R. Kusters (2001). Non-Standard Inferences in Description Logics. Volume
2100 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

M. Schmidt-Schau3 & G. Smolka (1991). Attributive concept descriptions
with complements. Artificial Intelligence, 48 (1): 1-26.

On-line material: http://dl.kr.org/courses.html

C. Peltason (1991). The BACK system—an overview. S/IGART Bull. 2, 3
(Jun. 1991), 114-119.

CLASSIC: http://www.bell-labs.com/project/classic/
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Part |: Overview

KR systems based on Description Logics

KR systems combining Description
Logics and Horn Clausal Logic
(fragments)

',,,_;r Dr. Francesca A. Lisi 42




RuleML (Rule Markup Language)

Developed to express both forward (bottom-up) and
backward (top-down) rules in XML for deduction,
rewriting, and further inferential-transformational tasks.
(function-free fragment of Horn
Clausal Logic)
Defined by the Rule Markup Initiative (an open network
of individuals and groups from both industry and
academia)

http://www.ruleml.org/ 4 R I
v Rule

Reelize your Khowl’gdgf

,,'.i ) Dr. Francesca A. Lisi 43

What is Horn Clausal Logic?

Horn clausal logic
(HCL) is the FOL

HCL FOL fragment that contains
universally quantified
disjunctions of literals
with at most one
positive literal

It is at the basis of
Logic Programming
and Deductive
Databases

,,‘.i Dr. Francesca A. Lisi 44




HCL syntax

Clausal language £ = the set of constant, variable,
functor and predicate symbols

Term: Constant / Variable / Function applied to a term
Atom: Predicate applied to n terms
Literal: (negated) atom

Horn Clause allows the two following equivalent
notations

VX VY (X, Y) v=q(X, a) v—=r1(Y,f(a)))
P(X, Y) <= q(X, a), r(Y,f(a))

Definite clause (rule): only one literal in the head
Unit clag%s,e (fact): rule witheut head a5

HCL Semantics

Herbrand model theory

Herbrand universe U, = the set of all ground

terms that can be formed out from the
cons?anQS anci1 function symHoIs N

Herbrand base B,, = the set of all ground atoms

that can be formed out from terms in U, and
predicates in £

Herbrand interpretation I, = subset of B,
containing all atoms that are true in I

,,,._i Dr. Francesca A. Lisi 46




HCL Deduction Rules_

SLD-resolution

2 opposite literals (up to a substitution) : ;6, = —k;0,

e.g., p(X):-q(X) and q(X) :- r(X,Y) vyield p(X):-r(X,Y)
p(X):- q(X) andq(a) yield p(a).

complete by refutation!

Dr. Francesca A. Lisi 47

Datalog

ey =i -

S. Ceri, G. Gottlob, & L. Tanca (1990). Logic Programming and Databases. Springer.

It is a function-free
fragment of HCL (more
precisely of definite
clauses)

It is used as logical
language for relational
databases

Query answering by SLD-
refutation

FOL

Dr. Francesca A. Lisi 18




Deductive databases

| Querying

Datalog program I1 Query
answering

',@ Dr. Francesca A. Lisi 49

Closed World Assumption (CWA)

The information in a database is generally
considered to be complete (closed world)

A database instance represents exactly one
interpretation, namely the one where classes
and relations in the schema are interpreted by
the objects and the tuples in the instance

Negation As Failure: what is unknown is false

'q? Dr. Francesca A. Lisi 50




Datalog:
example of query answering

IT= item(OrderID, ProductID) < orderDetail(OrderID, ProductID,_, , )
orderDetail(order10248, productl1, ‘£14',12,0.00)
Etc.

Is item(order10248, productll) derivable from IT?
Is IT w{— item(order10248, productll)} consistent?

< item(order10248, product1l) item(OrderID, ProductID) <— orderDetail(OrderID, ProductID, ,_, )

R{?derlD/orderlOMS, ProductID/ product11 } j

< orderDetail(order10248, productll,_, , )  orderDetail(order10248, productll, ‘£14',12,0.00)

{}
- ~ /
*'i Dr. Francesca A. Lisi 51
DLs and HCL

A. Borgida (1996). On the relative expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82: 353-367.
HCL and DLs can not be
compared wrt expressive
HCL FOL power

No relations of arbitrary arity
or arbitrary joins between
DLs relations in DLs

No exist. quant. in HCL
Can they be combined?

a,,»_i Dr. Francesca A. Lisi 59




Hybrid DL-HCL KR&R Systems

Levy & M.-C. Rousset (1998). Combining Horn rules and Descrlptlon Loglcs in

CARIN. Artificial Intelligence, 104: 165-209.
F. Donini et al. (1998). AL-log: Integrating Datalog and Description Logics. J. of

Intelligent Systems, 10(3):227-252.

A o 1t allows more expressive and deductive power

= < CARIN is a family of powerful hybrid languages
AL-log is less powerful than CARIN

It can easily lead to undecidability if unrestricted

Some CARIN languages are decidable
AL-log is decidable

Dr. Francesca A. Lisi 53

Querying

DL knowledge pregrtam IT  Reasoning

algorithms

Dr. Francesca A. Lisi 54




AL-log syntax

B=< 2, II>

ALC knowledge base -
constrained Datalog program

constrained Datalog clauses
Olgé— Oy, ooy Oy & Y140 Vi,
where o; are Datalog Ilterals and yj are constraints (ALC concepts from
¥ used as “typing constraints” for variables)
item(OrderID, ProductID) <— orderDetail(OrderID, ProductID,_, , )
& OrderID:Order, ProductID:Product

Safeness conditions:
Only positive Datalog literals in the body
Only one Datalog literal in the head
Constraints must refer to variables occurring in the Datalog part

Varlables in the Datalog part can be constrained
""'-f Dr. Francesca A. Lisi 55

AL-log semantics

interpretation for X Herbrand interpretation for IT,

g satisfies B iff

it satisfies ~, and

for each clause oy« ay, ..., o & y4,..., 75, fOr each of its ground
instances o'g« o'y, ..., &'y & ¥'phe, ¥y €ither there exists one vy, 1<i < n,
that is not satisfied by 7or o'j« o'y, ..., o', Is satisfied by 7

OWA of ALC and CWA of Datalog do not interfere (safeness)
UNA holqg for ALC and ground Datalog

:-:-—-_'I:': Dr. Francesca A. Lisi 56




AL-log reasoning

Query answering

Atomic queries (only Datalog)

Constrained SLD-resolution= SLD-resolution (Datalog
part) + tableau calculus (ALC part)

decidable

Sound and complete by refutation

Queries are answered by constrained SLD-refutation
For each ground instance Q' of the query Q,

collect the set of all constrained SLD-derivations d,, d,, .., d, of
bounded length (with dizQIO"ani) forQ' in X
Then check whether El:disj(anl,.., anm)

,,,._i Dr. Francesca A. Lisi 57

AL-log reasoning:
example of query answering

« item(order10248, product11) item(OrderID, ProductID) «— orderDetail(OrderlD, ProductID,_,_,_)
& OrderID:Order, ProductID:Product
wmlorderlom& ProductID/product11} j
< orderDetail(order10248, Y,_,_,_) orderDetail(order10248, product11, ‘£14,12,0.00)
& order10248:Order, Y:Product
K {Ylproduct1l } j
Y

« & order10248:Order, productl11:Product

Assuming that this is the only SLD-derivation for the query,
the existential entailment problem boils down to prove that

U { order10248:—Order, productl1:-Product }
Is unsatisfiable!

,,,._i Dr. Francesca A. Lisi 58




CARIN syntax and semantics

Y is based on any DL (but good results for ALCN'R)

I'T contain Horn rules, i.e. definite clauses, where DL
literals:

can be built from either concept or role predicates
are allowed in rule heads

The semantics naturally follows as in AL-log

,,,._i Dr. Francesca A. Lisi 59

CARIN reasoning

Query answering

Atomic queries (built from either concept, role or
ordinary predicates)

Constrained SLD-resolution= SLD-resolution (HCL part)
+ tableau calculus (DL part)
complete by refutation for non-recursive CARIN-ALCNR
Decidable for the non-recursive case

Undecidable for the recursive case, unless weaken the DL part
or impose rules to be role-safe

,,,._i Dr. Francesca A. Lisi 60




Back to SWRL
SWRL is undecidable!

Several decidable alternatives to SWRL
recently proposed:

DL-safe rules (Motik et al., 2005)

r-hybrid KBs (Rosati, 2005)

DL+log (Rosati, 2006)

hybrid MKNF KBs (Motik & Rosati, 2007)

,,,._i Dr. Francesca A. Lisi 61

Back to SWRL: an example

<ruleml:imp>

item(OrderlD, ProductID) < orderDetail(OrderID, ProductID,_,_,_)
<ruleml:_body>

& OrderID:Order, ProductID:Product

<owlx:Class owlx:name="&Order" /> <ruleml:var> OrderID </ruleml:var>

<owlx:Class owlx:name ="&Product" /> <ruleml:var> ProductID </ruleml:var>

swrix:property="&orderDetail"
<ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>.. <ruleml:var> .. </ruleml:var>

</ruleml:_body>
<ruleml:_head>
swrix:property="&item"
<ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>

</ruleml:_head>

< dmp> e .
Iruleml:imp S Dr. Francesca A. Lisi 62
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Inductive Logic Programming

S.-H. Nienhuys-Cheng & R. de Wolf (1997). Foundations of Inductive Logic
Programming. LNAI Tutorial Series, Springer.

Logic | Originally Induction of rules from
Programming examples and background knowledge
within the HCL framework
ILP Scope of induction: discrimination

Machine Class of tasks: prediction
Learning

Currently Induction of rules from observations and background
knowledge within the framework of FOL (fragments)
scope of induction: discrimination/characterization
task: prediction/description
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ILP Example:
“Bongard problems”

Simplified version of Bongard problems used as
benchmarks in ILP
Bongard: a Russian scientist studying pattern recognition
Bongard problem: Given some pictures, find patterns in them

E.g. we want to find a set of hypotheses (clausal theory)
that is complete and consistent with the following set of
(positive and negative) examples

Complete=covers all positive examples

Consistent=covers no negative example
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Negative examples

pos(X):- contains(X,01),contains(01,02),
triangle(01), points(O1,down),square(02)?
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Negative examples
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Induction in ILP

Induction as inverted deduction
INDUCTION

DEDUCTION

e
@ Dr. Francesca A. Lisi 73

Inverse resolution

PR T

S. Muggleton & W. Buntine (1988). Machine invention of first-order predicates by
inverting resolution. Proc. of the 5th Int. Conf. On Machine Learning, pp. 339-352.

Resolution implements |- for sets of clauses
Inverting it allows to generalize a clausal theory

Inverse resolution is much more difficult than
resolution itself

different operators defined

no unique results

e
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Inverse resolution (2)

Properties of inverse resolution:
+ in principle very powerful
- gives rise to huge search space

- result of inverse resolution not unique

e.g., father(j,p):-male(j) and parent(j,p) yields
father(j,p):-male(j),parent(j,p) or father(X,Y):-
male(X),parent(X,Y) or ...

Need for a ordered hypothesis space
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Induction in ILP (2)

Induction as generalization

Exploits results obtained in Concept Learning (Mitchell,
1982)
Generalization = search through a partially ordered space of
hypotheses with the goal of finding the hypothesis that best
fits the training examples
Provides a bunch of techniques for structuring,
searching, and boundingthe space of hypotheses when
the hypothesis language is defined over HCL
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Generality orders:
0-subsumption

G. Plotkin (1970). A note on inductive generalization. Machine Intelligence, 5:153-163.

G. Plotkin (1971). A further note on inductive generalization. Machine Intelligence,
6:101-124.

6-subsumption implements |- for single clauses
C, 6-subsumes C, (denoted C,<, C, ) if and only if there
exists a variable substitution 6 such that C,6 c C,

to check this, first write clauses as disjunctions
abcedef © avbvecv-dv—-ev-f
then try to replace variables with constants or other variables

Most often used in ILP

Syntactic generality!!
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Generality orders:
0-subsumption (2)

Logical properties

Sound: if ¢, 6-subsumes c, then c, |=c,

Incomplete: possibly ¢, |= ¢, without c; 8-subsuming c,
(but only for recursive clauses)

¢; = p(f(X)) :- p(X)

¢, = p(f(f(X))) :- p(X)

Checking 6-subsumption is decidable but NP-complete
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Generality orders:
0-subsumption (3)

Algebraic properties

It is a semi-order relation
l.e. transitive and reflexive, not anti-symmetric
It generates equivalence classes
equivalence class: ¢, ~ ¢, iff ¢, <,¢, and ¢, <, ¢,
¢, and c, are then called syntactic variants

c, is reduced clause of c, iff ¢, contains minimal subset of
literals of c, that is still equivalent with c,

each equivalence class represented by its reduced clause
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Generality orders:
0-subsumption (4)

Algebraic properties (cont.)

It generates a partial order on those equivalence classes

If ¢, and c, in different equivalence classes, either ¢, <, ¢, or ¢, <,
C, or neither => anti-symmetry => partial order

Thus, reduced clauses form a lattice
Least/greatest upper/lower bound of two clauses always exists
and is unique

Infinite chains ¢, <, ¢, <53 <y ... <, C exist

Looking for good hypothesis = traversing this lattice
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Generality orders:
generalized subsumption

W. Buntine (1988). Generalized subsumption and its applications to induction and
redundancy. Artificial Intelligence, 36(2): 149-176.

8 background knowledge

C,, C, two definite clauses
o a Skolem substitution for C, w.r.t. {C,}U®3

C,2,C, iff there exists a substitution 6 for C; such that
head(C,)6=head(C,)
Bu body(C,)o |- body(C,)6c
body(C,)6c is ground.
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Generality orders:
generalized subsumption (2)

Background knowledge 3
pet(X):-cat(X)
pet(X):-dog(X)
small(X):-cat(X)

Clauses:
C, = cuddlypet(X) :- small(X), pet(X)
C, = cuddlypet(X) :- cat(X)
Semantic generality!!
C,>,C,
0- subsumption fails
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Refinement operators

top

Heuristics-based searches
(greedy, beam, exhaustive...)

bottom
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Refinement operators:
properties

How to traverse hypothesis space so that

no hypotheses are generated more than once?
no hypotheses are skipped?

Properties of refinement operators

globally complete: each point in lattice is reachable
from top

locally complete: each point directly below c is in p(c)
(useful for greedy systems)

optimal: no point in lattice is reached twice (useful for
exhaustive systems)
mlnj%al’ proper, "Dr. Francesca A. Lisi a4




Refinement operators:
lgg

G. Plotkin (1970). A note on inductive generalization. Machine Intelligence, 5:153-163.

Bottom-up search in clausal spaces

Starts from 2 clauses and compute least general
generalisation (Igg)

l.e., given 2 clauses, return most specific single clause
that is more general than both of them

We shall consider only the case of clausal spaces
ordered according to 0-subsumption

lgg under 6-subsumption
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Refinement operators:
lgg (2)

Definition of 1gg of terms:

(let's;, t; denote any term, V a variable)
l9g(f(sy,---,8), f(ty,---,t0)) = f(lgg(sy,ty),.-.,199(sn.t0))
lgg(f(s,,.--,S,),9(ty,....t) =V

Definition of Igg of literals:

lgg(p(sl,...,sn),p(t1,...,tn)) = p(lgg(sl,tl),...,Igg(sn,tn))
l9g(=p(...), = p(...)) = = lgg(p(...).p(...))
lgg(p(sl,...,sn),q(tl,...,tn)) is undefined

lgg(p(...), =p(...)) and Igg(—p(...),p(...)) are undefined

Definition of Igg of clauses:
lgg(cuc;) = {lgg(l., 1) | l,€cy, l,ec, and Igg(l.l;) defined}
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Refinement operators:
relative Igg

G. Plotkin (1971). A further note on inductive generalization. Machine Intelligence,

6:101-124.

relative to "background theory" B

assume B is a set of facts
rlgg(e,.e,) = lgg(e, :- B, e, :- B)
method to compute:

change facts into clauses with body B
compute lgg of clauses
remove B, reduce

Used in in the ILP system Golem (Muggleton & Feng)

s

£
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Refinement operators:
example

Given the following 2 simple Bongard
configurations, find least general clause
that would predict both to be positive

'@V
A 4

@
w Dr. Francesca A. Lisi

88




Refinement operators:
example

Method 1: represent example by clause;
compute Igg of examples
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Refinement operators:
example

Method 2: represent class of example by
fact, other properties in background;
compute rigg

Examples: Background:

rlggps(l), pos(2)) =? (exercise)
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Refinement operators:
Shapiro’s specialization operator

E. Shapiro (1971). An algorithm that infers theories from facts. Proc. of the 7th
Int. Conf.on Artificial Intelligence, pp. 446-451.

Top down search in clausal spaces ordered
according to theta-subsumption:
p(c) yields set of refinements of ¢
theory: p(c) = {c' | ¢' is a maximally general
specialisation of c}
practice: p(c) c{c U {l} | lisaliteral} U {cO | 6 is
a substitution}

Used in many ILP systems
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Declarative bias

C. Nedellec et al. (1996). Declarative bias in ILP. In L. De Raedt (ed.),
Advances in Inductive Logic Programming, 1OS Press.

Language bias
Specifies and restricts the set of clauses or theories
that are permitted (language of hypotheses)

Search bias
Concerns the way the system searches through the
hypothesis space

Validation bias

Determines when the learned theory is acceptable,
so when the learning process may stop.
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ILP logical settings

L. De Raedt, L. Dehaspe (1997). Clausal Discovery. Machine Learning 26(2-3): 99-146.

Orthogonality of the following two
dimensions
Scope of induction
discriminant vs. characteristic induction

Representation of the observations

learning from implications vs. learning from
interpretations

leads to 4 different logical settings for ILP
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ILP logical settings:
Predictive vs Descriptive ILP

Prediction Description
'n >
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ILP logical settings:
ent

Examples:
\
Hypothesis:
> -

Example = a fact e
(or clause e:-B)

Background
knowledge:
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ILP logical settings:
Learning from interpretations

— == et gEE—e—c .

all information that intuitively belongs to the
example, is represented in the example, not in the
Examples: background knowledge!

Background knowledge:

knowledge concerning the domain,
not concerning specific examples!
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ILP logical settings:
Learning from interpretations (3)

eExample as a set of facts (intepretation)
*CWA made inside interpretations

Examples:

Background knowledge:

£
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constraint on pos

ILP logical settings:
some remarks

When learning from interpretations
You can dispose of an “example identifier”
but can also use standard format
You assume CWA for each example description
i.e., example description is assumed to be complete
You have class of example related to information inside example +
background information, NOT to information in other examples
Because of 3rd property, more limited than learning from
entailment
You cannot learn relations between examples, nor recursive clauses

... but also more efficient because of 2nd and 3rd property

positive PAC-learnability results (De Raedt and Dzeroski, 1994), vs.
negative results for learning from entailment
A,

5 -
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Learning in DLs

" FOL

Machine
Learning
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Learnability of DLs

W.W. Cohen & H. Hirsh (1992). Learnability of Description Logics. Proc. of the Fifth
Annual Workshop on Computational Learning Theory (COLT92), pp. 116-127. ACM Press.

M. Frazier & L. Pitt (1994). CLASSIC learning. In Proc. of the Seventh Annual Conference
on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.

Learnability of sublanguages of CLASSIC w.r.t.
the PAC learning model

LCS used as a means for inductive learning
from examples assumed to be concept
descriptions
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Learning in CLASSIC

W.W. Cohen & H. Hirsh (1994). Learning the CLASSIC Description Logic: Theoretical
and Experimental Results. Proc. of the 4th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR94), pages 121-133.

Supervised learning

Classified examples: ABox individuals

Goal: induce new concepts to be added to the TBox
Search direction: bottom-up

Algorithm: LCSLearn/LCSLearnDISJ]

Apply the MSC operator to compute the minimal Thox
generalizations of the examples

Apply the LCS operator to generalize the MSC descriptions of
examples

Limits: overly specific concept definitions
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Learning in BACK

J.-U. Kietz & K. Morik (1994). A Polynomial Approach to the Constructive Induction of
Structural Knowledge. Machine Learning 14(1): 193-217.

Unsupervised learning
Unclassified examples: ABox individuals
Goal: induce new concepts to be added to the TBox

Search direction: bottom-up

Algorithm: KLUSTER
Cluster the ABox individuals into /7 mutually disjoint concepts so
that 77 supervised learning problems are obtained
Find a correct definition of each of these concepts as follows:

Compute and evaluate the most specific generalization (MSG) of a
concept by applying the MSC operator;

Obtain the most general discrimination (MGD) of the concept by
furt_her generalizing the MSG.
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Refinement operators for DLs

L. Badea & S.-H. Nienhuys-Cheng (2000). A Refinement Operator for Description Logics.
In J. Cussens & A. Frisch (eds): Inductive Logic Programming, LNAI 1866, pp. 40-59

Complete and proper refinement operator for ALER
No minimal refinement operators exist for ALER

Minimality of all refinement steps can be achieved except for
those introducing
Complete refinement operators for ALER can not be

locally finite

An upward refinement operator can be obtained by
inverting the arrows in the refinement rules of the
downward one
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Refinement operators for DLs (2)

J. Lehmann & P. Hitzler (2007b). Foundations of Refinement Operators for Description
Logics. In: Proceedings of the 17th Int. Conf. on Inductive Logic Programming.

Let £ be a DL which allows to express T, 1, r, u, 3 and V
E.g. ALC
Maximal sets of properties of £ refinement operators

{Weakly complete, complete, finite}

{ Weakly complete, complete, proper}

{ Weakly complete, non-redundant, finite}
{ Weakly complete, non-redundant, proper}
{ Non-redundant, finite, proper}

Application: learning in ALC (Lehmann & Hitzler, 2007a)

Learning in ALC

F. Esposito, N. Fanizzi, L. lannone, I. Palmisano, & G. Semeraro (2004). Knowledge-
intensive induction of terminologies from metadata. Proc. of the 3rd International Semantic
Web Conference (ISWCO04), volume 3298 of Springer LNCS, pp. 411-426.

Supervised learning

Classified examples: ABox individuals

Goal: find a correct Thox concept definition
Search direction: bottom-up/top-down
Algorithm: YinYang

Apply the MSC operator to compute the minimal Thox
generalizations of the examples
Apply downward and upward refinement operators for ALC to

converge towards a correct concept definition
http:/fwww.di.uniba.it/~iannone/yinyang/
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Learning in ALC(2)

N. Fanizzi, L. lannone, I. Palmisano, & G. Semeraro (2004). Concept Formation in
Expressive Description Logics. In J.F. Boulicault et al. (eds.): Proc. of the 15th European
Conference on Machine Learning, ECMLO04, pp. 99-110, Springer.

Unsupervised learning
Unclassified examples: ABox individuals
Goal: induce new concepts to be added to the TBox

Algorithm: CSKA

Cluster the ABox individuals into mutually disjoint concepts
(see KLUSTER)

For each of these concepts find a correct concept definition by
applying downward and upward refinement operators for ALC

(see Yin/Yang)
Application: ontology refinement
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Learning in ALC(3)

C. d'Amato, N. Fanizzi, & F. Esposito (2006). Reasoning by Analogy in Description Logics
through Instance-based Learning. Proc. of the 3rd Italian Semantic Web Workshop.

Algorithm: kNN-DL

instance-based learning system
based on structural/semantic (dis)similarity measures

N. Fanizzi, C. d’/Amato, F. Esposito. Instance Based Retrieval by Analogy. SAC 2007
SDRC Track, 11-15 March 2007, Seoul, Korea

Algorithm: DiVS-kNN
instance-based learning system
Based on disjunctive version space
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Learning in ALC(4)

N. Fanizzi & C. d'’Amato (2006). A Declarative Kernel for ALC Concept Descriptions.
ISMIS 2006: Lecture Notes in Computer Science 4203, pp. 322-331

Task: classification
From distances to kernels

Kernel is a similarity measure (can be obtained from
distances)

Kernel machine = algorithm parameterized by
kernels

Learning in DLSs:
bibliography

J. Alvarez (1998). A Description Logic System for Learning in
Complex Domains. Proc. of the 1998 Int. Workshop on Description
Logics (DL'98).

J. Alvarez (2000a). A Formal Framework for Theory Learning using
Description Logics. Proc. of Int. Workshop on Inductive Logic
Programming (ILP'00), work in progress track.

J. Alvarez (2000b). TBox Acquisition and Information Theory. In:
Proc. of the 2000 Int. Workshop on Description Logics (DL'00).

L. Badea & S.-H. Nienhuys-Cheng (2000a). A Refinement Operator
for Description Logics. ILP 2000: 40-59

L. Badea & S.-H. Nienhuys-Cheng (2000b). Refining Concepts in
Description Logics. Description Logics 2000: 31-44
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Learning in DLs:
bibliography (2)

W.W. Cohen, A. Borgida, & H. Hirsh (1992). Computing Least
Common Subsumers in Description Logics. Proc. of the Tenth
National Conf. on Artificial Intelligence (AAAI92), pages 754-760.
AAAI Press/MIT Press.

W.W. Cohen & H. Hirsh (1992). Learnability of Description Logics.
Proc. of the Fifth Annual Workshop on Computational Learning
Theory (COLT92), pages 116-127. ACM Press.

W.W. Cohen & H. Hirsh (1994a). Learning the CLASSIC Description
Logic: Theoretical and Experimental Results. Proc. of the 4th Int.
Conf. on Principles of Knowledge Representation and Reasoning
(KR94), pages 121-133.

W.W. Cohen & H. Hirsh (1994b). The Learnability of Description
Logics with Equality Constraints. Machine Learning, 17(2):169-199.
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Learning in DLs:
bibliography (3)

C. d'Amato, N. Fanizzi, & F. Esgosito 0%00623. A dissimilarity measure
for ALC concept descriptions. SAC 2006: 1695-1699

C. d'Amato & N. Fanizzi (2006). Lazy Learning from Terminological
Knowledge Bases. Proc. 16th International Symposium on
Methodologies for Intelligent Systems, 27-29 September 2006, Bari,
Italy

F. Esposito, N. Fanizzi, L. lannone, I. Palmisano, G. Semeraro (2004).
Knowledge-Intensive Induction of Terminologies from Metadata.
International Semantic Web Conference 2004: 441-455

F. Esposito, N. Fanizzi, L. lannone, I. Palmisano, G. Semeraro (2005).
A Counterfactual-Based Learning Algorithm for Description Logic.
Al*1A 2005: 406-417

F. Esposito, N. Fanizzi, L. lannone, I. Palmisano, G. Semeraro:
Induction and Revision of Terminologies. ECAl 2004: 1007-1008
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bibliography (4)

N. Fanizzi & C. d'Amato (2006). A Declarative Kernel for ALC
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M. Frazier & L. Pitt (1994). CLASSIC learning. In Proceedings of the
Seventh Annual Conference on Computational Learning theory
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M. Frazier & L. Pitt (1996). CLASSIC Learning. Machine Learning, 25
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bibliography (5)
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Learning in CARIN-ALN

C. Rouveirol & V. Ventos (2000). Towards learning in CARIN-ALN. In J. Cussens
& A. Frisch (eds): Inductive Logic Programming, Springer LNAI 1866, 191-208.

Scope of induction: prediction

Logical setting: learning from interpretations
Language of hypotheses: definite clauses in CARIN-
AL/%/ g yp

Generality order: adaﬁtation of Buntine’s generalized
subsumption to CARIN-ALN

Coverage relations: query answering in CARIN-ALN
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Learning in CARIN-ALN (2)

J.-U. Kietz (2003). Learnability of description logic programs. In S. Matwin and C.
Sammut (Eds.), Inductive Logic Programming, Springer LNAI 2583, 117-132.

Method for transforming CARIN-ALN into

Datalog extended with numerical constraints

Transfer of learnability results known for ILP to
learning in CARIN-ALN
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Learning in AL-log

F.A. Lisi (2005). Principles of Inductive Reasoning on the Semantic Web: A
Framework for Learning in AL-log. In F. Fages and S. Soliman (Eds.), Principles
and Practice of Semantic Web Reasoning, Springer LNCS 3703, 118-132.

Scope of induction: prediction/description

Logical setting: learning from interpretations/learning
from implications

Language of hypotheses: constrained Datalog clauses

Generality order: adaptation of Buntine’s generalized
subsumption to AL-log

Coverage relations: query answering in AL-log
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Part Il: Overview

Introduction to ILP
ILP and DL representations
ILP and hybrid DL-HCL representations

ILP and the Semantic Web. Research
directions
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ILP and the Semantic Web:
research directions in theory

ILP frameworks for learning/mining in more
expressive DLs and DL-HCL hybridizations
closer to OWL and SWRL
ILP frameworks for learning/mining under
uncertainty and vagueness
closer to real-world ontologies
ILP frameworks for learning/mining from
multiple contexts
Closer to the real scenario of the Semantic Web
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ILP and the Semantic Web:
research directions in practice

Efficient implementations

Interfacing of ILP systems with specialized
reasoners for the Semantic Web

(Fuzzy) OWL/SWRL reasoners
Experimental work on big OWL/SWRL
ontologies
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ILP and the Semantic Web:
applications for learning in DLs

Ontology Refinement
Ontology Matching
Ontology Merging
FOAF

Semantic retrieval
Etc.
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ILP and the Semantic Web:
applications for learning in DL-HCL

Ontology Refinement
Some concepts are better defined with rules

Ontology Mapping
Semantic Web Services
Business rules

Policy rules

Etc.

Potentially all RIF use cases!
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Further resources

Tutorials on the Semantic Web
http:/lwww.w3.0rg/2001/sw/BestPractices/Tutorials
http://km.aifb.uni-karlsruhe.de/ws/prowl2006/
http://Irease.semanticweb.org/

Tutorials on Machine Learning for the Semantic Web
http://www.aifb.uni-karlsruhe.de/WBS/pci/OL_Tutorial ECML_PKDD_05/
http://www.uni-koblenz.de/~staab/Research/Events/ICMLO5tutorial/icmlO5tutorial. pdf
http://www.smi.ucd.ie/Dagstuhl-MLSW/proceedings/
http://ingenieur.kahosl.be/projecten/swa2002/slides/hendrik%20blockeel/Blockeel.ppt
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