
THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

THE CHALLENGES

OF THE SEMANTIC WEB

TO MACHINE LEARNING

AND DATA MINING

TUTORIAL NOTES

presented by
Francesca A. Lisi

September 17, 2007
Warsaw, Poland



Prepared and presented by:
Francesca A. Lisi
LACAM Group, Dipatimento di Informatica,
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The Semantic Web
T. Berners-Lee, J. Hendler, and O. Lassila (2001). The Semantic Web. 
Scientific American, May 2001, pp. 34–43.

aEvolving extension of the World Wide Web 
(WWW) in which WWW content can be 
expressed not only in natural language, but also 
in a format that can be read and used by 
software agents, thus permitting them to find, 
share and integrate information more easily.

aVision of the WWW as a universal medium for 
data, information, and knowledge exchange.
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The Semantic Web:
layered architecture 
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The Semantic Web:
layer of ontologies
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What is an ontology?
T. R. Gruber (1993). A translation approach to portable ontologies. Knowledge 
Acquisition, 5(2): 199-220.

An Ontology is a
formal specification
of a shared
conceptualization
of a domain of interest

⇒ Executable
⇒ Group of persons
⇒ About concepts
⇒ Between application
and „unique truth“
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OWL (Ontology Web Language)
a recommendation (i.e., a standard) for Web 

ontologies
`http://www.w3.org/2004/OWL/

a Developed by the        WebOnt Working Group
a Mark-up language

`compatible with RDF/XML exchange format
`based on earlier languages OIL and DAML+OIL
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The Semantic Web:
Rules on top of ontologies
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SWRL (Semantic Web Rule Language)

a Submitted to       for standardization
`http://www.w3.org/Submission/SWRL/

a Mark-up language
`compatible with RDF/XML exchange format
`integration of OWL and RuleML

a RIF (Rule Interchange Format) Working Group
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What the Semantic Web 
can do for ML/DM

1. Lots and lots of tools to describe and 
exchange data for later use by ML/DM 
methods in a canonical way!

2. Using ontological structures to improve 
the ML/DM tasks

3. Provide background knowledge to guide 
ML/DM systems
⌧ See PriCKLws@ECML/PKDD-07
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What ML/DM 
can do for the Semantic Web 

1. Learning Ontologies (even if not fully 
automatic)

2. Learning to map between ontologies
3. Deep Annotation: Reconciling databases 

and ontologies
4. Annotation by Information Extraction
5. Duplicate recognition
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Tutorial focus

aThe acquisition of ontologies and rules for the 
Semantic Web is a very demanding task

aThe logical nature of ontology and rule 
languages for the Semantic Web should not be 
neglected when choosing ML/DM methods to be 
applied

aInductive Logic Programming can be a source of 
solutions to the Knowledge Acquisition 
bottleneck of the Semantic Web
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Tutorial overview

aPart I: “Logical Foundations of Ontology 
and Rule Languages for the Semantic 
Web” (1h 30m)
aPart II: “Logic-based ML/DM methods 

for the Semantic Web” (1h 30m)



The Challenges of the Semantic Web 
to Machine Learning and Data Mining

Part I: “Logical Foundations 
of Ontology and Rule 
Languages for the 
Semantic Web” (1h 30m)
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Part I: Overview

aKR systems based on Description Logics
aKR systems combining Description 

Logics and Horn Clausal Logic 
(fragments)
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Part I: Overview

aKR systems based on Description Logics
aKR systems combining Description 

Logics and Horn Clausal Logic 
(fragments)

Dr. Francesca A. Lisi 16

OWL

a OWL provide three levels 
of expressive power

a All three correspond to
fragments of First Order
Logic but

a OWL DL is based on a 
family of fragments with
desirable computational
properties: Description 
Logics!

OWL Full

OWL DL

OWL Lite
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OWL DL

aWhy Description Logics?
aIt exploits results of 15+ years of KR&R research
`Well defined (model theoretic) semantics
`Formal properties well understood (complexity, 

decidability)
`Known reasoning algorithms
`Implemented systems (highly optimised)

Pellet
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What are Description Logics?
F. Baader et al. (2003). The Description Logic Handbook: Theory, Implementation, 
Applications. Cambridge University Press, Cambridge, UK. 

a DLs are decidable variable-
free fragments of First 
Order Logic (FOL)
`Describe domain in terms of 

concepts (classes), roles
(properties, relationships) 
and individuals

a DLs provide a family of 
logic based formalisms for 
Knowledge Representation 
and Reasoning (KR&R)
`Descendants of semantic 

networks and KL-ONE

DLs

FOL
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DL Basics
a Concepts (unary predicates/formulae with one free 

variable)
`E.g., Person, Doctor, HappyParent, (Doctor t Lawyer)

a Roles (binary predicates/formulae with two free 
variables)
`E.g., hasChild, loves, (hasBrother ◦ hasDaughter)

a Individuals (constants)
`E.g., John, Mary, Italy

a Operators (for forming complex concepts and roles 
from atomic ones) restricted so that:
`Satisfiability/subsumption is decidable and, if possible, of low 

complexity
`No need for explicit use of variables

⌧Restricted form of ∃ and ∀
⌧Features such as counting can be succinctly expressed
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The DL Family
a Smallest propositionally closed DL is ALC (Schmidt-Schauss and 

Smolka, 1991)
a S often used for ALC extended with transitive roles (R+)

a Additional letters indicate other extensions, e.g.:
`H for role hierarchy (e.g., hasDaughter v hasChild)
`O for nominals/singleton classes (e.g., {Italy})
` I for inverse roles (e.g., isChildOf ≡ hasChild–)
`N for number restrictions (e.g., r2hasChild, b3hasChild)
`Q for qualified number restrictions (e.g., r2hasChild.Doctor)
`F for functional number restrictions (e.g., b1hasMother)

a S + role hierarchy (H) + inverse (I) + QNR (Q) = SHIQ
a SHIQ is the basis for OWL

`OWL DL ≈ SHIQ extended with nominals (i.e., SHOIQ)
`OWL Lite ≈ SHIQ with only functional restrictions (i.e., SHIF)
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ALC syntax

atomic concept A Human 
atomic role  R  likes 
conjunction  CuD HumanuMale  

disjunction  CtD  NicetRich 

negation  ¬C  ¬Meat  
existential restriction  ∃R.C  ∃hasChild.Human 
value restriction  ∀R.C  ∀hasChild.Nice 
 

a E.g., person all of whose children are either Doctors or have a child 
who is a Doctor:

Person u ∀hasChild.(Doctor t ∃hasChild.Doctor)
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DL Semantics

Semantics given by standard FOL model theory:
Interpretation function I Interpretation domain ∆I

Individuals iI ∈ ∆I

John

Mary
Concepts CI ⊆ ∆I

Lawyer

Doctor

Vehicle
Roles rI ⊆ ∆I × ∆I

hasChild

owns (Lawyer u Doctor)
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DL Semantics: 
Unique Names Assumption (UNA)

R. Reiter (1980). A logic for default reasoning. 
Artificial Intelligence, 13:81-132. 

aaI ≠ bI if a≠b

Dr. Francesca A. Lisi 24

ALC semantics

atomic concept  A  AI⊆∆I 
atomic role  R  RI⊆∆I×∆I 
conjunction  CuD CI∩DI 

disjunction  CtD CI∪DI 

negation  ¬C  ∆I\ CI  
existential 
restriction  

∃R.C {x | ∃y.〈x,y〉∈RI ∧ y∈CI} 

value restriction  ∀R.C {x | ∀y.〈x,y〉∈RI ⇒ y∈CI} 
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DL Deduction Rules

Tableau calculus

a Applies rules that correspond to DL constructors 
`E.g., John:(Person u Doctor) →u John:Person and John:Doctor

a Stops when no more rules applicable or clash occurs 
`Clash is an obvious contradiction, e.g., A(x), ¬A(x)

a Some rules are nondeterministic (e.g., t, $)

`In practice, this means search

a Cycle check (blocking) often needed to ensure 
termination
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ALC Deduction Rules

An algorithm based on tableau calculus for ALC
a Tries to build a (tree) model I for input concept C

a Breaks down C syntactically, inferring constraints on 
elements in I

a Applies inference rules corresponding to ALC constructors

(e.g. →∃)
aWorks non-deterministically in PSpace
a Stops when a clash, i.e. a contradiction, occurs (C is

inconsistent) or no other rule can be applied (C is
consistent)
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Mapping DLs to FOL

a Most DLs are decidable fragments of FOL
`ALC is a fragment of FOL with two variables (L2)

a For mapping ALC to FOL introduce:

`a unary predicate A for a concept name A
`a binary relation R for a role name R

a Translate complex concepts C, D as follows: 
`tx(A)=A(x)
`tx(CuD)= tx(C)∧tx(D)
`tx(CtD)= tx(C)∨tx(D)

`tx(∃R.C)= ∃y.R(x,y)∧ty(C)
`tx(∀R.C)= ∀y.R(x,y)⇒ty(C)

ty(A)=A(x)
ty(CuD)= ty(C)∧ty(D)
ty(CtD)= ty(C)∨ty(D)

ty(∃R.C)= ∃y.R(x,y)∧tx(C)
ty(∀R.C)= ∀y.R(x,y)⇒tx(C)
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DL Knowledge Bases

Tbox T

Abox A

Knowledge Base Σ

Assertional part
� Extensional knowledge
� In the form of assertions

Terminological part
� Intensional knowledge
� In the form of axioms
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ALC Knowledge Bases:
syntax

Tbox
aequality axioms
` A≡C 
` Father ≡

Manu∃hasChild.Human

a inclusion axioms
`CvD 
`∃favourite.Brewery v

∃drinks.Beer

ABox
aconcept assertions
`a:C 
`john:Father

arole assertions
`<a,b>:R 
`< john,bill>: has-child
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Open World Assumption (OWA)

aThe information in an Abox is generally 
considered to be incomplete (open world)
aAn Abox represents possibly infinitely 

many interpretations, namely its models
aQuery answering requires nontrivial 

reasoning
aClassical negation! 
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ALC Knowledge Bases:
semantics
An interpretation IO = (∆I, .I) satisfies

a an equality axiom A≡C iff AI ≡ CI

a an inclusion axiom CvD iff CI ⊆ DI

a a Tbox T iff I satisfies all axioms in T

a a concept assertion a:C iff aI∈CI

a a role assertion <a,b>:R iff <aI,bI>∈RI

a a ABox A iff I satisfies all assertions in A
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DL-based KR&R systems

Tbox T

AboxA

Knowledge base Σ Reasoning
services
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DL-based KR&R systems: 
standard reasoning tasks

Subsumption
a .. of concepts C and D (CvD)

`Is CI⊆DI in all interpretations I?
a .. of concepts C and D w.r.t. a TBox T (CvT D)

`Is CI⊆DI in all models I of T?

Consistency
a .. of a concept C w.r.t. a TBox T

`Is there a model I of T with CI≠∅ ? 
a .. of a ABox A

`Is there a model I of A? 
a .. of a KB (T, A)

`Is there a model I of both T and A?
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DL-based KR&R systems: 
standard reasoning tasks (2)

a Subsumption and consistency are closely related
`CvT D iff Cu¬D is inconsistent w.r.t. T
`C is consistent w.r.t. T iff not CvT Au¬A

a Algorithms for checking consistency w.r.t TBoxes suffice
`Based on tableau calculus
`Decidability is important
`Complexity between P and ExpTime

Instance check
a .. of an individual a and a concept C w.r.t. a KB Σ

`Is a:C derivable from Σ? Or equivalently,
`Is Σ ∪{a:¬ C} consistent?



Dr. Francesca A. Lisi 35

ALC-based KR&R systems: 
example of instance check

a Σ=DairyProductmProduct, product11:DairyProduct, etc.

`Is product11:Product derivable from Σ?
Or equivalently

`Is Σ ∪{ product11:¬ Product} consistent?

product11 :¬Product

product11:⊥

DairyProductmProduct

product11:DairyProduct

product11:¬DairyProduct+Product

product11:¬DairyProduct
→+

→⊥

→m
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DL-based KR&R systems: 
non-standard reasoning tasks

Most Specific Concept (MSC)

a Intuitively, the MSC of individuals in an ABox is a 
concept description that represents all the properties 
of the individuals including the concept assertions they 
occur in and their relationship to other individuals

a The existence of MSC is not guaranteed for all DLs
` Approximation of MSC is possible!

a However, if the MSC exists, it is uniquely determined 
up to equivalence  

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems. New 
York: Springer. 
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DL-based KR&R systems: 
non-standard reasoning tasks (2)

Least Common Subsumer (LCS)

a The LCS of a given sequence of concept descriptions is 
` Intuitively, a concept description that represents the properties 

that all the elements of the sequence have in common
` More formally, the MSC description that subsumes the given 

concept descriptions
a The existence of the LCS for a given sequence of 

concept descriptions is not guaranteed but ..
a .. if an LCS exists, then it is uniquely determined up to 

equivalence  

W.W. Cohen, A. Borgida, & H. Hirsh (1992). Computing Least Common Subsumers in 
Description Logics. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92), 
pages 754-760. AAAI Press/MIT Press.
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Back to OWL DL:
DL syntax

a C is a concept (class); P is a role (property); x is an 
individual name

a XMLS datatypes as well as classes in ∀P.C and ∃P.C
`Restricted form of DL concrete domains
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Back to OWL DL:
DL syntax (2)

aOWL ontology equivalent to DL KB (Tbox + 
Abox)
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Back to OWL DL:
an example
a Dairy products are products

<owl:Class rdf:ID=“DairyProduct”>
<rdfs:subClassOf rdf:about="#Product"/>
</rdfs:subClassOf>

</owl:Class>

a European customers are customers living in European countries

<owl:Class rdf:ID=“EuropeanCustomer”>
<owl:equivalentClass/>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Customer"/>
<owl:restriction/>
<owl:onProperty rdfResource=“#livesIn”/>
<owl:allValuesFrom rdf:resource="#EuropeanCountry"/>
</owl:allValuesFrom>

</owl:restriction>
</owl:intersectionOf>

</owl:equivalentClass>
</owl:Class>
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Description Logics:
Bibliography (only the essential)

a F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider 
(2003). The Description Logic Handbook: Theory, Implementation, 
Applications. Cambridge University Press, Cambridge, UK.

a R. Kusters (2001). Non-Standard Inferences in Description Logics. Volume 
2100 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

a M. Schmidt-Schauß & G. Smolka (1991). Attributive concept descriptions 
with complements. Artificial Intelligence, 48 (1): 1-26. 

a On-line material: http://dl.kr.org/courses.html

a C. Peltason (1991). The BACK system—an overview. SIGART Bull. 2, 3 
(Jun. 1991), 114-119.

a CLASSIC: http://www.bell-labs.com/project/classic/
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Part I: Overview

aKR systems based on Description Logics
aKR systems combining Description 

Logics and Horn Clausal Logic 
(fragments)
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RuleML (Rule Markup Language)

a Developed to express both forward (bottom-up) and 
backward (top-down) rules in XML for deduction, 
rewriting, and further inferential-transformational tasks.

a Based on Datalog (function-free fragment of Horn 
Clausal Logic)

a Defined by the Rule Markup Initiative (an open network 
of individuals and groups from both industry and 
academia)
`http://www.ruleml.org/
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What is Horn Clausal Logic?

aHorn clausal logic 
(HCL) is the FOL 
fragment that contains 
universally quantified 
disjunctions of literals 
with at most one 
positive literal

aIt is at the basis of 
Logic Programming 
and Deductive 
Databases 

HCL FOL
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HCL syntax
a Clausal language L = the set of constant, variable, 

functor and predicate symbols

a Term: Constant / Variable / Function applied to a term
a Atom: Predicate applied to n terms
a Literal: (negated) atom

a Horn Clause allows the two following equivalent 
notations
`∀X ∀Y(p(X, Y) ∨¬ q(X, a) ∨¬ r(Y,f(a)))
`p(X, Y) ← q(X, a), r(Y,f(a))

a Definite clause (rule): only one literal in the head
a Unit clause (fact): rule without head
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HCL Semantics

Herbrand model theory

aHerbrand universe UH = the set of all ground
terms that can be formed out from the 
constants and function symbols in L

aHerbrand base BH = the set of all ground atoms 
that can be formed out from terms in UH and
predicates in L

aHerbrand interpretation IH = subset of BH
containing all atoms that are true in IH
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HCL Deduction Rules

SLD-resolution

acomplete by refutation!

l1 ∨ ... ∨ li ∨ ... ∨ ln k1 ∨ ... ∨ kj ∨ ... ∨ km
-------------------------------------------------------------------------------

(l1 ∨ l2 ∨ ... ∨ li-1 ∨ li+1 ∨ ... ∨ ln ∨ k1 ∨ kj-1 ∨ kj+1 ... ∨ km) θ1θ2

l1 ∨ ... ∨ li ∨ ... ∨ ln k1 ∨ ... ∨ kj ∨ ... ∨ km
-------------------------------------------------------------------------------

(l1 ∨ l2 ∨ ... ∨ li-1 ∨ li+1 ∨ ... ∨ ln ∨ k1 ∨ kj-1 ∨ kj+1 ... ∨ km) θ1θ2

2 opposite literals (up to a substitution) : liθ1 =  ¬kjθ2

e.g.,  p(X) :- q(X)  and q(X) :- r(X,Y)   yield   p(X) :- r(X,Y)
p(X) :- q(X)   and q(a)   yield   p(a).
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Datalog
S. Ceri, G. Gottlob, & L. Tanca (1990). Logic Programming and Databases. Springer.

a It is a function-free 
fragment of HCL (more 
precisely of definite 
clauses)

a It is used as logical 
language for relational 
databases

a Query answering by SLD-
refutation

HCL

Datalog

FOL
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Deductive databases

IDB

EDB

Datalog program Π Query 
answering

Querying
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Closed World Assumption (CWA)

aThe information in a database is generally 
considered to be complete (closed world)

aA database instance represents exactly one 
interpretation, namely the one where classes
and relations in the schema are interpreted by
the objects and the tuples in the instance

aNegation As Failure: what is unknown is false
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Datalog: 
example of query answering
a Π= item(OrderID, ProductID) ← orderDetail(OrderID, ProductID,_,_,_) 

orderDetail(order10248, product11, ‘£14’,12,0.00)
Etc.

` Is item(order10248, product11) derivable from Π?
` Is Π ∪{¬ item(order10248, product11)} consistent?

← item(order10248, product11) item(OrderID, ProductID) ← orderDetail(OrderID, ProductID,_,_,_) 

{OrderID/order10248, ProductID/ product11 }

orderDetail(order10248, product11, ‘£14’,12,0.00)← orderDetail(order10248, product11,_,_,_) 

{}

←
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DLs and HCL
A. Borgida (1996). On the relative expressiveness of Description Logics and Predicate 
Logics. Artificial Intelligence, 82: 353-367.

a HCL and DLs can not be 
compared wrt expressive 
power
`No relations of arbitrary arity 

or arbitrary joins between 
relations in DLs

`No exist. quant. in HCL

a Can they be combined?

DLs

HCL FOL

?
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Hybrid DL-HCL KR&R Systems
Levy & M.-C. Rousset (1998). Combining Horn rules and Description Logics in 

CARIN. Artificial Intelligence, 104: 165-209.
F. Donini et al. (1998). AL-log: Integrating Datalog and Description Logics. J. of 

Intelligent Systems, 10(3):227-252.

a It allows more expressive and deductive power
`CARIN is a family of powerful hybrid languages
`AL-log is less powerful than CARIN

a It can easily lead to undecidability if unrestricted
`Some CARIN languages are decidable
`AL-log is decidable
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Hybrid DL-HCL KR&R systems

Tbox T

AboxA

DL knowledge base Σ Reasoning
algorithms

IDB

EDB

HCL program Π

Querying
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AL-log syntax

BB = < = < ΣΣ , , ΠΠ>>
constrained Datalog program

ALC knowledge base

constrained Datalog clauses
α0← α1, …, αm & γ1,…, γn

where αi are Datalog literals and γj are constraints (ALC concepts from 
Σ used as “typing constraints” for variables)

a item(OrderID, ProductID) ← orderDetail(OrderID, ProductID,_,_,_) 
& OrderID:Order, ProductID:Product

a Safeness conditions:
`Only positive Datalog literals in the body
`Only one Datalog literal in the head
` Constraints must refer to variables occurring in the Datalog part
` Variables in the Datalog part can be constrained
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AL-log semantics

JJ=(=(IIOO, , IIHH))

Herbrand interpretation for ΠΠDDinterpretation for ΣΣ

a J satisfies B iff
` it satisfies Σ, and
` for each clause α0← α1, …, αm & γ1,…, γn, for each of its ground

instances α’0← α’1, …, α’m & γ’1,…, γ’n, either there exists one γ’i, 1≤ i ≤ n, 
that is not satisfied by J or α’0← α’1, …, α’m is satisfied by J

a OWA ofALC and CWA of Datalog do not interfere (safeness)
a UNA holds for ALC and ground Datalog
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AL-log reasoning

Query answering

a Atomic queries (only Datalog)
a Constrained SLD-resolution= SLD-resolution (Datalog

part) + tableau calculus (ALC part)
`decidable
`Sound and complete by refutation

a Queries are answered by constrained SLD-refutation
`For each ground instance Q’ of the query Q, 
`collect the set of all constrained SLD-derivations d1, d2, .., dm of 

bounded length (with di=Qi
0..Qi

ni
) for Q’ in Σ

`Then check whether Σ£disj(Q1
n1

,.., Qm
nm

)
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AL-log reasoning: 
example of query answering

← item(order10248, product11) item(OrderID, ProductID) ← orderDetail(OrderID, ProductID,_,_,_) 
& OrderID:Order, ProductID:Product

{OrderID/order10248, ProductID/product11}

orderDetail(order10248, product11, ‘£14’,12,0.00)← orderDetail(order10248, Y,_,_,_) 
& order10248:Order, Y:Product

← & order10248:Order, product11:Product

{Y/product11 }

Assuming that this is the only SLD-derivation for the query, 
the existential entailment problem boils down to prove that 

S» { order10248:ŸOrder, product11:ŸProduct }
is unsatisfiable!
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CARIN syntax and semantics

a S is based on any DL (but good results for ALCNR) 

a Π contain Horn rules, i.e. definite clauses, where DL 
literals:
`can be built from either concept or role predicates 
`are allowed in rule heads

a The semantics naturally follows as in AL-log
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CARIN reasoning

Query answering

a Atomic queries (built from either concept, role or 
ordinary predicates)

a Constrained SLD-resolution= SLD-resolution (HCL part) 
+ tableau calculus (DL part)
`complete by refutation for non-recursive CARIN-ALCNR   
`Decidable for the non-recursive case
`Undecidable for the recursive case, unless weaken the DL part 

or impose rules to be role-safe
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Back to SWRL

aSWRL is undecidable!

aSeveral decidable alternatives to SWRL 
recently proposed:
`DL-safe rules (Motik et al., 2005)
`r-hybrid KBs (Rosati, 2005)
`DL+log (Rosati, 2006)

`hybrid MKNF KBs (Motik & Rosati, 2007)
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Back to SWRL: an example
<ruleml:imp>

<ruleml:_body>
<swrlx:classAtom>

<owlx:Class owlx:name="&OrderOrder" /> <ruleml:var> OrderID </ruleml:var> 
</swrlx:classAtom>
<swrlx:classAtom>

<owlx:Class owlx:name ="&ProductProduct" /> <ruleml:var> ProductID </ruleml:var> 
</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="&orderDetail">

<ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>.. <ruleml:var> .. </ruleml:var>
</swrlx:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:individualPropertyAtom swrlx:property="&item">

<ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>   
</swrlx:individualPropertyAtom>

</ruleml:_head>
</ruleml:imp>

item(OrderID, ProductID) ← orderDetail(OrderID, ProductID,_,_,_) 
& OrderID:Order, ProductID:Product
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The Challenges of the Semantic Web 
to Machine Learning and Data Mining
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Ontologies and Rules for 
the Semantic Web with 
Inductive Logic 
Programming” (1h 30m)
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Part II: Overview

aIntroduction to Inductive Logic 
Programming (ILP)
aILP and DL representations
aILP and hybrid DL-HCL representations
aILP and the Semantic Web: Research

directions
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Part II: Overview

aIntroduction to ILP
aILP and DL representations
aILP and hybrid DL-HCL representations
aILP and the Semantic Web: Research

directions
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Inductive Logic Programming

a Originally Induction of rules from 
examples and background knowledge 
within the HCL framework
`Scope of induction: discrimination
`Class of tasks: predictionMachine 

Learning

ILP

Logic
Programming

S.-H. Nienhuys-Cheng & R. de Wolf (1997). Foundations of Inductive Logic
Programming. LNAI Tutorial Series, Springer.

a Currently Induction of rules from observations and background 
knowledge within the framework of FOL (fragments)
`scope of induction: discrimination/characterization
`task: prediction/description
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ILP Example:
“Bongard problems”

a Simplified version of Bongard problems used as 
benchmarks in ILP
`Bongard: a Russian scientist studying pattern recognition
`Bongard problem: Given some pictures, find patterns in them

a E.g. we want to find a set of hypotheses (clausal theory) 
that is complete and consistent with the following set of 
(positive and negative) examples
`Complete=covers all positive examples
`Consistent=covers no negative example
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Negative examples

Positive examples

neg(ex1):- contains(ex1,o1),contains(o1,o2),triangle(o1), 
points(o1,down),square(o2).
neg(ex1):- contains(ex1,o1),contains(o1,o2),triangle(o1), 
points(o1,down),square(o2).

pos(ex2):- contains(ex2,o3),contains(o3,o4),triangle(o3), 
points(o3,down),square(o4), contains(ex2,o5), 
contains(o5,o6), circle(o5),triangle(o6), points(o6,up).

pos(ex2):- contains(ex2,o3),contains(o3,o4),triangle(o3), 
points(o3,down),square(o4), contains(ex2,o5), 
contains(o5,o6), circle(o5),triangle(o6), points(o6,up).

pos(X):- contains(X,O1),contains(O1,O2),
triangle(O1), points(O1,down),square(O2)?
pos(X):- contains(X,O1),contains(O1,O2),
triangle(O1), points(O1,down),square(O2)?

Dr. Francesca A. Lisi 72

Negative examples

Positive examples
pos(X):- contains(X,O1),contains(O1,O2),
circle(O1),square(O2), points(O1,up)?
pos(X):- contains(X,O1),contains(O1,O2),
circle(O1),square(O2), points(O1,up)?
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Induction in ILP
Induction as inverted deduction

Facts
events

observations

theories
rules

models

DEDUCTION

INDUCTION
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Inverse resolution
S. Muggleton & W. Buntine (1988). Machine invention of first-order predicates by 
inverting resolution. Proc. of the 5th Int. Conf. On Machine Learning, pp. 339-352.

aResolution implements |- for sets of clauses
aInverting it allows to generalize a clausal theory
aInverse resolution is much more difficult than 

resolution itself
`different operators defined
`no unique results
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Inverse resolution (2)

aProperties of inverse resolution:
`+ in principle very powerful
`- gives rise to huge search space
`- result of inverse resolution not unique
⌧e.g., father(j,p):-male(j) and parent(j,p) yields 

father(j,p):-male(j),parent(j,p) or father(X,Y):-
male(X),parent(X,Y) or …

aNeed for a ordered hypothesis space
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Induction in ILP (2)

Induction as generalization

a Exploits results obtained in Concept Learning (Mitchell, 
1982) 
`Generalization = search through a partially ordered space of 

hypotheses with the goal of finding the hypothesis that best 
fits the training examples

a Provides a bunch of techniques for structuring, 
searching, and boundingthe space of hypotheses when
the hypothesis language is defined over HCL
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Generality orders:
θ-subsumption 
G. Plotkin (1970). A note on inductive generalization. Machine Intelligence, 5:153-163.
G. Plotkin (1971). A further note on inductive generalization. Machine Intelligence, 
6:101-124.

a θ-subsumption implements |- for single clauses
a C1 θ-subsumes C2 (denoted C1≤θ C2 ) if and only if there 

exists a variable substitution θ such that C1θ ⊆ C2

`to check this, first write clauses as disjunctions

⌧a,b,c ← d,e,f    ⇔ a ∨ b ∨ c ∨ ¬d ∨ ¬e ∨ ¬f 
`then try to replace variables with constants or other variables

a Most often used in ILP

a Syntactic generality!!
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Generality orders:
θ-subsumption (2)

Logical properties 

a Sound: if c1 θ-subsumes c2 then c1 |= c2

a Incomplete: possibly c1 |= c2 without c1 θ-subsuming c2
(but only for recursive clauses)
`c1 : p(f(X)) :- p(X)

`c2 : p(f(f(X))) :- p(X)

a Checking θ-subsumption is decidable but NP-complete
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Generality orders:
θ-subsumption (3)

Algebraic properties 

a It is a semi-order relation
`I.e. transitive and reflexive, not anti-symmetric

a It generates equivalence classes

`equivalence class: c1 ~ c2 iff c1 ≤θ c2 and c2 ≤θ c1

`c1 and c2 are then called syntactic variants
`c1 is reduced clause of c2 iff c1 contains minimal subset of 

literals of c2 that is still equivalent with c2

`each equivalence class represented by its reduced clause
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Generality orders:
θ-subsumption (4)

Algebraic properties (cont.)

a It generates a partial order on those equivalence classes

`If c1 and c2 in different equivalence classes, either c1 ≤θ c2 or c2 ≤θ
c1 or neither => anti-symmetry => partial order

a Thus, reduced clauses form a lattice
`Least/greatest upper/lower bound of two clauses always exists 

and is unique

`Infinite chains c1 ≤θ c2 ≤θ c3 ≤θ ... ≤θ c exist

a Looking for good hypothesis = traversing this lattice
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Generality orders:
generalized subsumption

W. Buntine (1988). Generalized subsumption and its applications to induction and 
redundancy. Artificial Intelligence, 36(2): 149-176.

aa B B background knowledge
aa CC11, CC22 two definite clauses
a σ a Skolem substitution for CC22 w.r.t. {CC11}∪B

CC11≥≥BBCC22 iff there exists a substitution θ for C1 such that
a head(C1)θ=head(C2)
a B∪ body(C2)σ |- body(C1)θσ
a body(C1)θσ is ground.
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Generality orders:
generalized subsumption (2)

aBackground knowledge B
`pet(X):-cat(X)
`pet(X):-dog(X)
`small(X):-cat(X)

aClauses:
`C1 = cuddlypet(X) :- small(X), pet(X)
`C2 = cuddlypet(X) :- cat(X)

aSemantic generality!!
`C1 ≥B C2

`θ- subsumption fails
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Refinement operators

top

VS

Heuristics-based searches
(greedy, beam, exhaustive…)

bottom
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Refinement operators:
properties

aHow to traverse hypothesis space so that
`no hypotheses are generated more than once?
`no hypotheses are skipped?

aProperties of refinement operators
`globally complete: each point in lattice is reachable 

from top
`locally complete: each point directly below c is in ρ(c) 

(useful for greedy systems)

`optimal: no point in lattice is reached twice (useful for 
exhaustive systems)

`minimal, proper, …



Dr. Francesca A. Lisi 85

Refinement operators:
lgg

G. Plotkin (1970). A note on inductive generalization. Machine Intelligence, 5:153-163.

aBottom-up search in clausal spaces
`Starts from 2 clauses and compute least general 

generalisation (lgg)

`i.e., given 2 clauses, return most specific single clause 
that is more general than both of them

aWe shall consider only the case of clausal spaces 
ordered according to θ-subsumption
`lgg under θ-subsumption 

Dr. Francesca A. Lisi 86

Refinement operators:
lgg (2)
a Definition of lgg of terms:

`(let si, tj denote any term, V a variable)
`lgg(f(s1,...,sn), f(t1,...,tn)) = f(lgg(s1,t1),...,lgg(sn,tn))
`lgg(f(s1,...,sn),g(t1,...,tn)) = V

a Definition of lgg of literals:
`lgg(p(s1,...,sn),p(t1,...,tn)) = p(lgg(s1,t1),...,lgg(sn,tn))
`lgg(¬p(...), ¬ p(...)) = ¬ lgg(p(...),p(...))
`lgg(p(s1,...,sn),q(t1,...,tn)) is undefined
`lgg(p(...), ¬p(...)) and lgg(¬p(...),p(...)) are undefined

a Definition of lgg of clauses:
`lgg(c1,c2) = {lgg(l1, l2) | l1∈c1, l2∈c2 and lgg(l1,l2) defined}
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Refinement operators:
relative lgg

G. Plotkin (1971). A further note on inductive generalization. Machine Intelligence, 
6:101-124.

a relative to "background theory" B
`assume B is a set of facts

a rlgg(e1,e2) = lgg(e1 :- B, e2 :- B)
amethod to compute:

`change facts into clauses with body B

`compute lgg of clauses

`remove B, reduce

a Used in in the ILP system Golem (Muggleton & Feng)
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Refinement operators:
example

aGiven the following 2 simple Bongard
configurations, find least general clause 
that would predict both to be positive

pos(1).                        pos(2).
contains(1,o1).           contains(2,o3).
contains(1,o2).
triangle(o1).               triangle(o3).
points(o1,down).       points(o3,down).
circle(o2).

pos(1).                        pos(2).
contains(1,o1).           contains(2,o3).
contains(1,o2).
triangle(o1).               triangle(o3).
points(o1,down).       points(o3,down).
circle(o2).

1

2
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Refinement operators:
example

aMethod 1: represent example by clause; 
compute lgg of examples

pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),
points(o1,down), circle(o2).

pos(2) :- contains(2,o3), triangle(o3), points(o3,down).

pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),
points(o1,down), circle(o2).

pos(2) :- contains(2,o3), triangle(o3), points(o3,down).

lgg(
(pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down), circle(o2)) , 
(pos(2) :- contains(2,o3), triangle(o3), points(o3, down) )
= pos(X) :- contains(X,Y), triangle(Y), points(Y,down)

lgg(
(pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down), circle(o2)) , 
(pos(2) :- contains(2,o3), triangle(o3), points(o3, down) )
= pos(X) :- contains(X,Y), triangle(Y), points(Y,down)
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Refinement operators:
example

aMethod 2: represent class of example by 
fact, other properties in background; 
compute rlgg

Examples: Background:
pos(1).
pos(2).
pos(1).
pos(2). contains(1,o1).         contains(2,o3).

contains(1,o2).
triangle(o1).             triangle(o3).
points(o1,down).      points(o3,down).
circle(o2).

contains(1,o1).         contains(2,o3).
contains(1,o2).
triangle(o1).             triangle(o3).
points(o1,down).      points(o3,down).
circle(o2).

rlgg(pos(1), pos(2)) = ?   (exercise)
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Refinement operators:
Shapiro’s specialization operator

E. Shapiro (1971). An algorithm that infers theories from facts. Proc. of the 7th 
Int. Conf.on Artificial Intelligence, pp. 446-451.

aTop down search in clausal spaces ordered 
according to theta-subsumption:

`ρ(c) yields set of refinements of c

`theory: ρ(c) = {c' | c' is a maximally general 
specialisation of c}

`practice: ρ(c) ⊆ {c ∪ {l} | l is a literal} ∪ {cθ | θ is 
a substitution}

aUsed in many ILP systems
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Declarative bias
C. Nedellec et al. (1996). Declarative bias in ILP. In L. De Raedt (ed.), 
Advances in Inductive Logic Programming, IOS Press.

aLanguage bias
`Specifies and restricts the set of clauses or theories 

that are permitted (language of hypotheses)
aSearch bias
`Concerns the way the system searches through the 

hypothesis space
aValidation bias
`Determines when the learned theory is acceptable, 

so when the learning process may stop. 
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ILP logical settings
L. De Raedt, L. Dehaspe (1997). Clausal Discovery. Machine Learning 26(2-3): 99-146.

aOrthogonality of the following two 
dimensions 
`Scope of induction
⌧ discriminant vs. characteristic induction

`Representation of the observations
⌧learning from implications vs. learning from 

interpretations

leads to 4 different logical settings for ILP
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ILP logical settings:
Predictive vs Descriptive ILP

Prediction

H
+ +

+
+

+
+

++

Description

+ +
+

+
+

+

+

-
-

-
- -

H
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ILP logical settings:
Learning from entailment

contains(1,o1).
contains(1,o2).
contains(2,o3).
triangle(o1).             
triangle(o3).
points(o1,down).     
points(o3,down).
circle(o2).
contains(3,o4).
circle(o4).

contains(1,o1).
contains(1,o2).
contains(2,o3).
triangle(o1).             
triangle(o3).
points(o1,down).     
points(o3,down).
circle(o2).
contains(3,o4).
circle(o4).

pos(1).
pos(2).
:- pos(3).

pos(1).
pos(2).
:- pos(3).

Examples:

Hypothesis:

pos(X) :- contains(X,Y),
triangle(Y), points(Y,down).
pos(X) :- contains(X,Y),
triangle(Y), points(Y,down).

Background
knowledge:

Example = a fact e
(or clause e:-B)
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ILP logical settings:
Learning from interpretations

all information that intuitively belongs to the 
example, is represented in the example, not in the 
background knowledge!Examples:

pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), 
points(o1,down), circle(o2).
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).
:- pos(3), contains(3,o4), circle(o4).

pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), 
points(o1,down), circle(o2).
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).
:- pos(3), contains(3,o4), circle(o4).

Background knowledge:
Hypothesis:polygon(X) :- triangle(X).

polygon(X) :- square(X).
polygon(X) :- triangle(X).
polygon(X) :- square(X).

pos(X) :- contains(X,Y),
triangle(Y), points(Y,down).
pos(X) :- contains(X,Y),
triangle(Y), points(Y,down).knowledge concerning the domain, 

not concerning specific examples!
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ILP logical settings:
Learning from interpretations (3)

•Example as a set of facts (intepretation)
•CWA made inside interpretations

Examples:
pos: {contains(o1), contains(o2), triangle(o1), 

points(o1,down), circle(o2)}
pos: {contains(o3), triangle(o3), points(o3,down)}
neg: {contains(o4), circle(o4)}

pos: {contains(o1), contains(o2), triangle(o1), 
points(o1,down), circle(o2)}

pos: {contains(o3), triangle(o3), points(o3,down)}
neg: {contains(o4), circle(o4)}

Background knowledge:
polygon(X) :- triangle(X).
polygon(X) :- square(X).
polygon(X) :- triangle(X).
polygon(X) :- square(X). constraint on pos

∃Y:contains(Y),triangle(Y),points(Y,down).∃Y:contains(Y),triangle(Y),points(Y,down).
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ILP logical settings:
some remarks

a When learning from interpretations
1. You can dispose of an “example identifier”

⌧ but can also use standard format
2. You assume CWA for each example description

⌧ i.e., example description is assumed to be complete
3. You have class of example related to information inside example + 

background information, NOT to information in other examples

a Because of 3rd property, more limited than learning from 
entailment
` You cannot learn relations between examples, nor recursive clauses

a … but also more efficient because of 2nd and 3rd property
` positive PAC-learnability results (De Raedt and Džeroski, 1994), vs. 

negative results for learning from entailment
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Part II: Overview

aIntroduction to ILP
aILP and DL representations
aILP and hybrid DL-HCL representations
aILP and the Semantic Web: Research

directions
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Learning in DLs

Machine 
Learning

ILP

Logic
Programming

FOL?

DLs
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Learnability of DLs
W.W. Cohen & H. Hirsh (1992). Learnability of Description Logics.  Proc. of the Fifth 
Annual Workshop on Computational Learning Theory (COLT92), pp. 116-127. ACM Press.
M. Frazier & L. Pitt (1994). CLASSIC learning. In Proc. of the Seventh Annual Conference 
on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.

a Learnability of sublanguages of CLASSIC w.r.t. 
the PAC learning model

a LCS used as a means for inductive learning 
from examples assumed to be concept 
descriptions
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Learning in CLASSIC
W.W. Cohen & H. Hirsh (1994). Learning the CLASSIC Description Logic: Theoretical
and Experimental Results. Proc. of the 4th Int. Conf. on Principles of Knowledge 
Representation and Reasoning (KR94), pages 121-133.

a Supervised learning
` Classified examples: ABox individuals 
` Goal: induce new concepts to be added to the TBox

a Search direction: bottom-up
a Algorithm: LCSLearn/LCSLearnDISJ

1. Apply the MSC operator to compute the minimal Tbox 
generalizations of the examples

2. Apply the LCS operator to generalize the MSC descriptions of 
examples

a Limits: overly specific concept definitions
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Learning in BACK
J.-U. Kietz & K. Morik (1994). A Polynomial Approach to the Constructive Induction of 
Structural Knowledge. Machine Learning 14(1): 193-217.

a Unsupervised learning
` Unclassified examples: ABox individuals 
` Goal: induce new concepts to be added to the TBox

a Search direction: bottom-up
a Algorithm: KLUSTER

1. Cluster the ABox individuals into n mutually disjoint concepts so 
that n supervised learning problems are obtained

2. Find a correct definition of each of these concepts as follows:
1. Compute and evaluate the most specific generalization (MSG) of a 

concept by applying the MSC operator;
2. Obtain the most general discrimination (MGD) of the concept by 

further generalizing the MSG.

Dr. Francesca A. Lisi 104

Refinement operators for DLs
L. Badea & S.-H. Nienhuys-Cheng (2000). A Refinement Operator for Description Logics. 
In J. Cussens & A. Frisch (eds): Inductive Logic Programming, LNAI 1866, pp. 40-59

a Complete and proper refinement operator for ALER
a No minimal refinement operators exist for ALER

`Minimality of all refinement steps can be achieved except for 
those introducing 

a Complete refinement operators for ALER can not be 

locally finite
a An upward refinement operator can be obtained by 

inverting the arrows in the refinement rules of the 
downward one



Refinement operators for DLs (2)
J. Lehmann & P. Hitzler (2007b). Foundations of Refinement Operators for Description 
Logics. In: Proceedings of the 17th Int. Conf. on Inductive Logic Programming. 

a Let L be a DL which allows to express ¨, ⊥, u, t, ∃ and ∀
` E.g. ALC

a Maximal sets of properties of L refinement operators
1. {Weakly complete, complete, finite}
2. { Weakly complete, complete, proper}
3. { Weakly complete, non-redundant, finite}
4. { Weakly complete, non-redundant, proper}
5. { Non-redundant, finite, proper}

a Application: learning in ALC (Lehmann & Hitzler, 2007a) 
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Learning in ALC
F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). Knowledge-
intensive induction of terminologies from metadata. Proc. of the 3rd International Semantic
Web Conference (ISWC04), volume 3298 of Springer LNCS, pp. 411-426.

a Supervised learning
` Classified examples: ABox individuals 
` Goal: find a correct Tbox concept definition

a Search direction: bottom-up/top-down
a Algorithm: YinYang

1. Apply the MSC operator to compute the minimal Tbox 
generalizations of the examples

2. Apply downward and upward refinement operators for ALC to
converge towards a correct concept definition

a http://www.di.uniba.it/~iannone/yinyang/
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Learning in ALC (2)

N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). Concept Formation in 
Expressive Description Logics. In J.F. Boulicault et al. (eds.): Proc. of the 15th European 
Conference on Machine Learning, ECML04, pp. 99-110, Springer.

a Unsupervised learning
` Unclassified examples: ABox individuals 
` Goal: induce new concepts to be added to the TBox

a Algorithm: CSKA
1. Cluster the ABox individuals into mutually disjoint concepts

(see KLUSTER)
2. For each of these concepts find a correct concept definition by 

applying downward and upward refinement operators for ALC 
(see Yin/Yang)

a Application: ontology refinement
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Learning in ALC (3)

C. d'Amato, N. Fanizzi, & F. Esposito (2006). Reasoning by Analogy in Description Logics 
through Instance-based Learning. Proc. of the 3rd Italian Semantic Web Workshop.

a Algorithm: kNN-DL
`instance-based learning system
`based on structural/semantic (dis)similarity measures

N. Fanizzi, C. d'Amato, F. Esposito. Instance Based Retrieval by Analogy. SAC 2007 
SDRC Track, 11-15 March 2007, Seoul, Korea 

a Algorithm: DiVS-kNN
`instance-based learning system

`Based on disjunctive version space



Learning in ALC (4)
N. Fanizzi & C. d'Amato (2006). A Declarative Kernel for ALC Concept Descriptions. 
ISMIS 2006: Lecture Notes in Computer Science 4203, pp. 322-331

aTask: classification
aFrom distances to kernels
`Kernel is a similarity measure (can be obtained from 

distances)

`Kernel machine = algorithm parameterized by 
kernels
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Part II: Overview

aIntroduction to ILP
aILP and DL representations
aILP and hybrid DL-HCL representations
aILP and the Semantic Web: Research

directions
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Learning in DL-HCL
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Learning in CARIN-ALN
C. Rouveirol & V. Ventos (2000). Towards learning in CARIN-ALN. In J. Cussens
& A. Frisch (eds): Inductive Logic Programming, Springer LNAI 1866, 191-208.

a Scope of induction: prediction
a Logical setting: learning from interpretations
a Language of hypotheses: definite clauses in CARIN-
ALN

a Generality order: adaptation of Buntine’s generalized 
subsumption to CARIN-ALN

a Coverage relations: query answering in CARIN-ALN
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Learning in CARIN-ALN (2)

J.-U. Kietz (2003). Learnability of description logic programs. In S. Matwin and C. 
Sammut (Eds.), Inductive Logic Programming, Springer LNAI 2583, 117-132.

aMethod for transforming CARIN-ALN into 

Datalog extended with numerical constraints
aTransfer of learnability results known for ILP to 

learning in CARIN-ALN 
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Learning in AL-log

F.A. Lisi (2005). Principles of Inductive Reasoning on the Semantic Web: A 
Framework for Learning in AL-log. In F. Fages and S. Soliman (Eds.), Principles
and Practice of Semantic Web Reasoning, Springer LNCS 3703, 118-132.

a Scope of induction: prediction/description
a Logical setting: learning from interpretations/learning 

from implications
a Language of hypotheses: constrained Datalog clauses
a Generality order: adaptation of Buntine’s generalized 

subsumption to AL-log
a Coverage relations: query answering in AL-log
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Part II: Overview

aIntroduction to ILP
aILP and DL representations
aILP and hybrid DL-HCL representations
aILP and the Semantic Web: Research

directions
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ILP and the Semantic Web:
research directions in theory

aILP frameworks for learning/mining in more 
expressive DLs and DL-HCL hybridizations
` closer to OWL and SWRL

aILP frameworks for learning/mining under 
uncertainty and vagueness
`closer to real-world ontologies

aILP frameworks for learning/mining from 
multiple contexts
`Closer to the real scenario of the Semantic Web 
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ILP and the Semantic Web:
research directions in practice

aEfficient implementations
aInterfacing of ILP systems with specialized 

reasoners for the Semantic Web
`(Fuzzy) OWL/SWRL reasoners

aExperimental work on big OWL/SWRL
ontologies
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ILP and the Semantic Web:
applications for learning in DLs

aOntology Refinement
aOntology Matching
aOntology Merging
aFOAF
aSemantic retrieval
aEtc.
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ILP and the Semantic Web:
applications for learning in DL-HCL

aOntology Refinement
`Some concepts are better defined with rules

aOntology Mapping
aSemantic Web Services
aBusiness rules
aPolicy rules
aEtc.

Potentially all RIF use cases! 
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Further resources

a Tutorials on the Semantic Web
`http://www.w3.org/2001/sw/BestPractices/Tutorials
`http://km.aifb.uni-karlsruhe.de/ws/prowl2006/
`http://rease.semanticweb.org/

a Tutorials on Machine Learning for the Semantic Web
`http://www.aifb.uni-karlsruhe.de/WBS/pci/OL_Tutorial_ECML_PKDD_05/
`http://www.uni-koblenz.de/~staab/Research/Events/ICML05tutorial/icml05tutorial.pdf
`http://www.smi.ucd.ie/Dagstuhl-MLSW/proceedings/
`http://ingenieur.kahosl.be/projecten/swa2002/slides/hendrik%20blockeel/Blockeel.ppt


