

THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND
THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

**THE CHALLENGES
OF THE SEMANTIC WEB
TO MACHINE LEARNING
AND DATA MINING
TUTORIAL NOTES**

presented by
Francesca A. Lisi

September 17, 2007
Warsaw, Poland

Prepared and presented by:

Francesca A. Lisi

LACAM Group, Dipartimento di Informatica,
Università degli Studi di Bari, Italy

The Challenges of the Semantic Web to Machine Learning and Data Mining

Francesca A. Lisi

lisi@di.uniba.it

LACAM group
Dipartimento di Informatica

Università degli Studi di Bari
Via Orabona, 4 - 70126 Bari - Italy

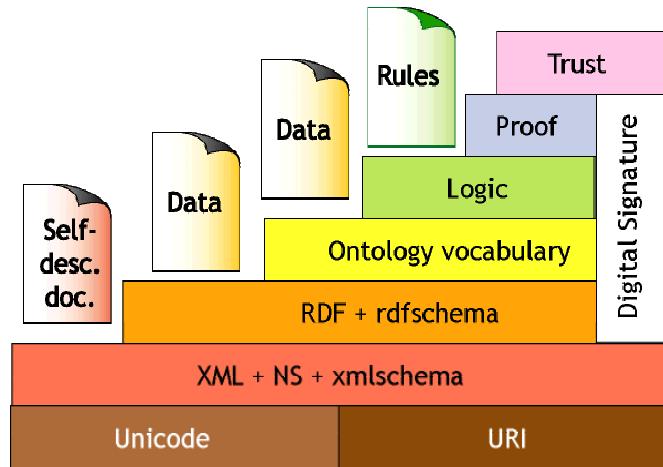
The Semantic Web

T. Berners-Lee, J. Hendler, and O. Lassila (2001). *The Semantic Web*.
Scientific American, May 2001, pp. 34–43.

- ⌘ Evolving extension of the World Wide Web (WWW) in which WWW content can be expressed not only in natural language, but also in a format that can be read and used by software agents, thus permitting them to find, share and integrate information more easily.
- ⌘ Vision of the WWW as a universal medium for data, information, and knowledge exchange.

Dr. Francesca A. Lisi

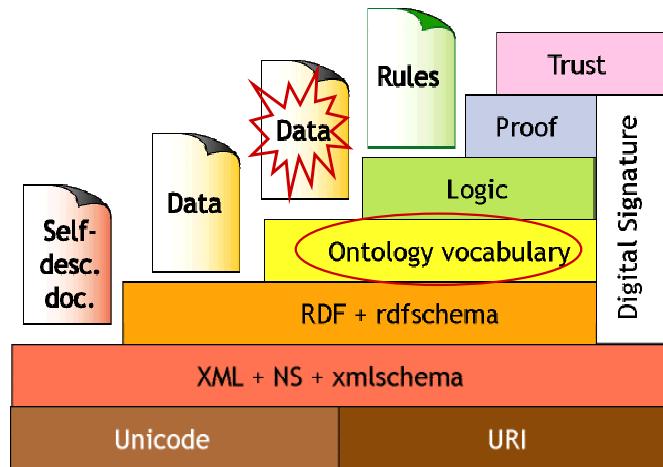
The Semantic Web: layered architecture



Dr. Francesca A. Lisi

3

The Semantic Web: layer of ontologies



Dr. Francesca A. Lisi

4

What is an ontology?

T. R. Gruber (1993). *A translation approach to portable ontologies*. *Knowledge Acquisition*, 5(2): 199-220.

An Ontology is a
formal specification
of a shared
conceptualization
of a domain of interest

⇒ Executable
⇒ Group of persons
⇒ About concepts
⇒ Between application
and „unique truth“

Dr. Francesca A. Lisi

5

OWL (Ontology Web Language)

⌘ **W3C recommendation** (i.e., a standard) for Web
ontologies

↗ <http://www.w3.org/2004/OWL/>

⌘ Developed by the **W3C WebOnt Working Group**

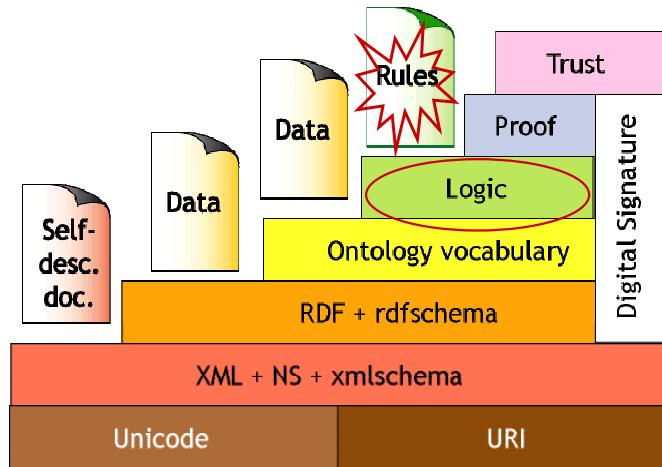
⌘ Mark-up language

↗ compatible with RDF/XML exchange format

↗ based on earlier languages OIL and DAML+OIL

Dr. Francesca A. Lisi

The Semantic Web: Rules on top of ontologies



Dr. Francesca A. Lisi

7

SWRL (Semantic Web Rule Language)

- ⌘ Submitted to **W3C** for standardization
 - <http://www.w3.org/Submission/SWRL/>
- ⌘ Mark-up language
 - compatible with RDF/XML exchange format
 - integration of OWL and RuleML
- ⌘ **W3C RIF (Rule Interchange Format) Working Group**

Dr. Francesca A. Lisi

8

What the Semantic Web can do for ML/DM

1. Lots and lots of tools to describe and exchange data for later use by ML/DM methods in a canonical way!
2. Using ontological structures to improve the ML/DM tasks
3. Provide background knowledge to guide ML/DM systems

☒ See PriCKLws@ECML/PKDD-07

Dr. Francesca A. Lisi

9

What ML/DM can do for the Semantic Web

1. Learning Ontologies (even if not fully automatic)
2. Learning to map between ontologies
3. Deep Annotation: Reconciling databases and ontologies
4. Annotation by Information Extraction
5. Duplicate recognition

Dr. Francesca A. Lisi

10

Tutorial focus

- ⌘ The acquisition of ontologies and rules for the Semantic Web is a very demanding task
- ⌘ The logical nature of ontology and rule languages for the Semantic Web should not be neglected when choosing ML/DM methods to be applied
- ⌘ Inductive Logic Programming can be a source of solutions to the Knowledge Acquisition bottleneck of the Semantic Web

Tutorial overview

- ⌘ **Part I:** “Logical Foundations of Ontology and Rule Languages for the Semantic Web” (1h 30m)
- ⌘ **Part II:** “Logic-based ML/DM methods for the Semantic Web” (1h 30m)

The Challenges of the Semantic Web to Machine Learning and Data Mining

**Part I: “Logical Foundations
of Ontology and Rule
Languages for the
Semantic Web” (1h 30m)**

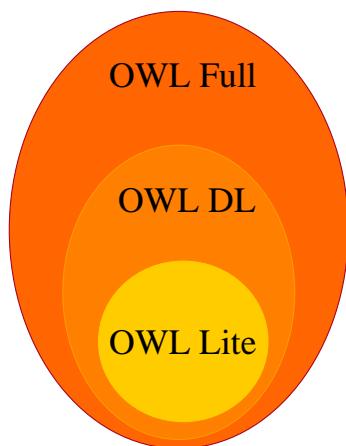
Part I: Overview

- ⌘ KR systems based on Description Logics
- ⌘ KR systems combining Description Logics and Horn Clausal Logic (fragments)

Part I: Overview

- ⌘ KR systems based on Description Logics
- ⌘ KR systems combining Description Logics and Horn Clausal Logic (fragments)

OWL



- ⌘ OWL provide three levels of expressive power
- ⌘ All three correspond to fragments of First Order Logic but
- ⌘ OWL DL is based on a family of fragments with desirable computational properties: **Description Logics!**

OWL DL

⌘ Why Description Logics?

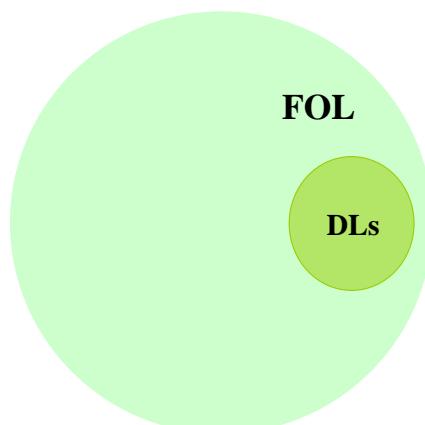
- ⌘ It exploits results of 15+ years of KR&R research
 - ⌘ Well defined (model theoretic) **semantics**
 - ⌘ **Formal properties** well understood (complexity, decidability)
 - ⌘ Known **reasoning** algorithms
 - ⌘ **Implemented systems** (highly optimised)

Dr. Francesca A. Lisi

17

What are Description Logics?

F. Baader et al. (2003). *The Description Logic Handbook: Theory, Implementation, Applications*. Cambridge University Press, Cambridge, UK.



Dr. Francesca A. Lisi

- ⌘ DLs are decidable variable-free fragments of First Order Logic (FOL)
 - ⌘ Describe domain in terms of **concepts** (classes), **roles** (properties, relationships) and **individuals**

- ⌘ DLs provide a family of logic based formalisms for Knowledge Representation and Reasoning (KR&R)

- ⌘ Descendants of **semantic networks** and **KL-ONE**

18

DL Basics

- ⌘ **Concepts** (unary predicates/formulae with one free variable)
 - ▣ E.g., Person, Doctor, HappyParent, (Doctor \sqcup Lawyer)
- ⌘ **Roles** (binary predicates/formulae with two free variables)
 - ▣ E.g., hasChild, loves, (hasBrother \circ hasDaughter)
- ⌘ **Individuals** (constants)
 - ▣ E.g., John, Mary, Italy
- ⌘ **Operators** (for forming complex concepts and roles from atomic ones) restricted so that:
 - ▣ Satisfiability/subsumption is decidable and, *if possible*, of low complexity
 - ▣ No need for explicit use of variables
 - ▣ Restricted form of \exists and \forall
 - ▣ Features such as counting can be succinctly expressed

Dr. Francesca A. Lisi

19

The DL Family

- ⌘ Smallest propositionally closed DL is ***ALC*** (Schmidt-Schauss and Smolka, 1991)
- ⌘ ***S*** often used for ***ALC*** extended with transitive roles (R_+)
- ⌘ **Additional letters** indicate other extensions, e.g.:
 - ▣ ***H*** for role hierarchy (e.g., hasDaughter \sqsubseteq hasChild)
 - ▣ ***O*** for nominals/singleton classes (e.g., {Italy})
 - ▣ ***I*** for inverse roles (e.g., isChildOf \equiv hasChild $^{-1}$)
 - ▣ ***N*** for number restrictions (e.g., ≥ 2 hasChild, ≤ 3 hasChild)
 - ▣ ***Q*** for qualified number restrictions (e.g., ≥ 2 hasChild.Doctor)
 - ▣ ***F*** for functional number restrictions (e.g., ≤ 1 hasMother)
- ⌘ ***S*** + role hierarchy (***H***) + inverse (***I***) + QNR (***Q***) = ***SHIQ***
- ⌘ ***SHIQ*** is the basis for **OWL**
 - ▣ OWL DL \approx ***SHIQ*** extended with nominals (i.e., ***SHOIQ***)
 - ▣ OWL Lite \approx ***SHIQ*** with only functional restrictions (i.e., ***SHIF***)

Dr. Francesca A. Lisi

20

ALC syntax

<i>atomic concept</i>	A	Human
<i>atomic role</i>	R	likes
<i>conjunction</i>	C \sqcap D	Human \sqcap Male
<i>disjunction</i>	C \sqcup D	Nice \sqcup Rich
<i>negation</i>	\neg C	\neg Meat
<i>existential restriction</i>	\exists R.C	\exists hasChild.Human
<i>value restriction</i>	\forall R.C	\forall hasChild.Nice

- ❖ E.g., person all of whose children are either Doctors or have a child who is a Doctor;

Person \sqcap $\forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})$

Dr. Francesca A. Lisi

21

DL Semantics

Semantics given by standard FOL model theory:

Interpretation function \mathcal{I}

Interpretation domain $\Delta^{\mathcal{I}}$

Individuals $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

John

Mary

Concepts $C^I \subseteq \Delta^I$

Lawye

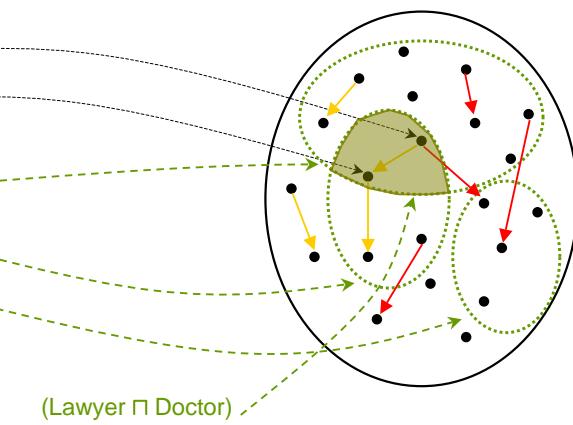
Doctor

Vehicl

Roles $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

hasChild

owns



(Lawyer || Doctor)

Dr. Francesca A. Lisi

22

DL Semantics: Unique Names Assumption (UNA)

R. Reiter (1980). A logic for default reasoning.
Artificial Intelligence, 13:81-132.

⌘ $a^I \neq b^I$ if $a \neq b$

\mathcal{ALC} semantics

<i>atomic concept</i>	A	$A^I \subseteq \Delta^I$
<i>atomic role</i>	R	$R^I \subseteq \Delta^I \times \Delta^I$
<i>conjunction</i>	$C \sqcap D$	$C^I \cap D^I$
<i>disjunction</i>	$C \sqcup D$	$C^I \cup D^I$
<i>negation</i>	$\neg C$	$\Delta^I \setminus C^I$
<i>existential restriction</i>	$\exists R.C$	$\{x \mid \exists y. \langle x, y \rangle \in R^I \wedge y \in C^I\}$
<i>value restriction</i>	$\forall R.C$	$\{x \mid \forall y. \langle x, y \rangle \in R^I \Rightarrow y \in C^I\}$

DL Deduction Rules

Tableau calculus

- ⌘ Applies rules that correspond to DL constructors
 - ▣ E.g., $\text{John:}(\text{Person} \sqcap \text{Doctor}) \rightarrow_{\sqcap} \text{John:Person}$ and John:Doctor
- ⌘ Stops when no more rules applicable or **clash** occurs
 - ▣ Clash is an obvious contradiction, e.g., $A(x), \neg A(x)$
- ⌘ Some rules are **nondeterministic** (e.g., \sqcup, \exists)
 - ▣ In practice, this means **search**
- ⌘ Cycle check (**blocking**) often needed to ensure termination

\mathcal{ALC} Deduction Rules

An algorithm based on **tableau calculus** for \mathcal{ALC}

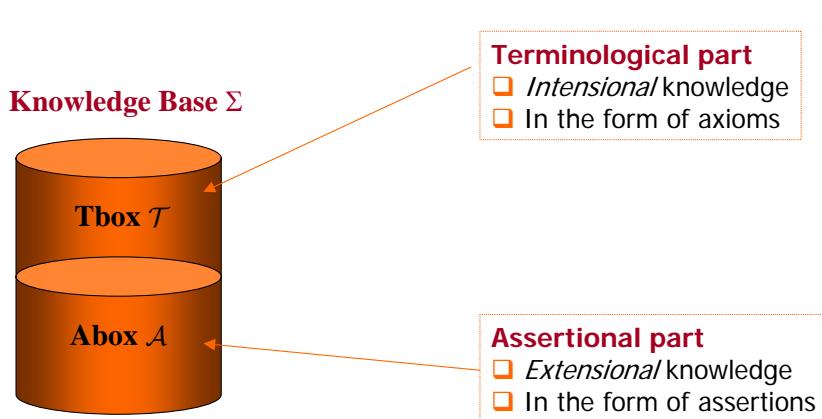
- ⌘ Tries to build a (tree) model \mathcal{I} for input concept C
- ⌘ Breaks down C syntactically, inferring constraints on elements in \mathcal{I}
- ⌘ Applies inference rules corresponding to \mathcal{ALC} constructors (e.g. \rightarrow_{\exists})
- ⌘ Works non-deterministically in PSpace
- ⌘ Stops when a clash, i.e. a contradiction, occurs (C is inconsistent) or no other rule can be applied (C is consistent)

Mapping DLs to FOL

- ⌘ Most DLs are decidable fragments of FOL
 - ◻ \mathcal{ALC} is a fragment of FOL with two variables (L2)
- ⌘ For mapping \mathcal{ALC} to FOL introduce:
 - ◻ a unary predicate A for a concept name A
 - ◻ a binary relation R for a role name R
- ⌘ Translate complex concepts C, D as follows:

<ul style="list-style-type: none">◻ $t_x(A) = A(x)$◻ $t_x(C \sqcap D) = t_x(C) \wedge t_x(D)$◻ $t_x(C \sqcup D) = t_x(C) \vee t_x(D)$◻ $t_x(\exists R.C) = \exists y.R(x,y) \wedge t_y(C)$◻ $t_x(\forall R.C) = \forall y.R(x,y) \Rightarrow t_y(C)$	<ul style="list-style-type: none">◻ $t_y(A) = A(x)$◻ $t_y(C \sqcap D) = t_y(C) \wedge t_y(D)$◻ $t_y(C \sqcup D) = t_y(C) \vee t_y(D)$◻ $t_y(\exists R.C) = \exists y.R(x,y) \wedge t_x(C)$◻ $t_y(\forall R.C) = \forall y.R(x,y) \Rightarrow t_x(C)$
---	---

DL Knowledge Bases



\mathcal{ALC} Knowledge Bases: syntax

Tbox

⌘ equality axioms

- ◻ $A \equiv C$
- ◻ $\text{Father} \equiv \text{Man} \sqcap \exists \text{hasChild}.\text{Human}$

⌘ inclusion axioms

- ◻ $C \sqsubseteq D$
- ◻ $\exists \text{favourite}.\text{Brewery} \sqsubseteq \exists \text{drinks}.\text{Beer}$

ABox

⌘ concept assertions

- ◻ $a : C$
- ◻ $\text{john} : \text{Father}$

⌘ role assertions

- ◻ $\langle a, b \rangle : R$
- ◻ $\langle \text{john}, \text{bill} \rangle : \text{has-child}$

Open World Assumption (OWA)

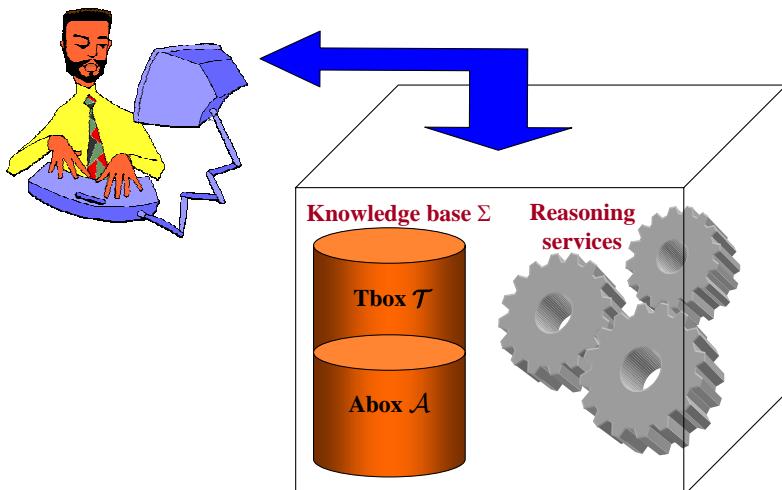
- ⌘ The information in an Abox is generally considered to be incomplete (*open world*)
- ⌘ An Abox represents possibly infinitely many interpretations, namely its models
- ⌘ Query answering requires nontrivial reasoning
- ⌘ Classical negation!

\mathcal{ALC} Knowledge Bases: semantics

An interpretation $\mathcal{I}_O = (\Delta^{\mathcal{I}}, .^{\mathcal{I}})$ satisfies

- ⌘ an equality axiom $A \equiv C$ iff $A^{\mathcal{I}} \equiv C^{\mathcal{I}}$
- ⌘ an inclusion axiom $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- ⌘ a Tbox \mathcal{T} iff \mathcal{I} satisfies all axioms in \mathcal{T}
- ⌘ a concept assertion $a:C$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- ⌘ a role assertion $\langle a, b \rangle : R$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$
- ⌘ a ABox \mathcal{A} iff \mathcal{I} satisfies all assertions in \mathcal{A}

DL-based KR&R systems



DL-based KR&R systems: standard reasoning tasks

Subsumption

- ⌘ .. of concepts C and D ($C \sqsubseteq D$)
 - ◻ Is $C \sqsubseteq D^I$ in all interpretations I ?
- ⌘ .. of concepts C and D w.r.t. a TBox \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$)
 - ◻ Is $C \sqsubseteq D^I$ in all models I of \mathcal{T} ?

Consistency

- ⌘ .. of a concept C w.r.t. a TBox \mathcal{T}
 - ◻ Is there a model I of \mathcal{T} with $C^I \neq \emptyset$?
- ⌘ .. of a ABox \mathcal{A}
 - ◻ Is there a model I of \mathcal{A} ?
- ⌘ .. of a KB $(\mathcal{T}, \mathcal{A})$
 - ◻ Is there a model I of both \mathcal{T} and \mathcal{A} ?

DL-based KR&R systems: standard reasoning tasks (2)

- ⌘ Subsumption and consistency are closely related
 - ◻ $C \sqsubseteq_{\mathcal{T}} D$ iff $C \sqcap \neg D$ is inconsistent w.r.t. \mathcal{T}
 - ◻ C is consistent w.r.t. \mathcal{T} iff not $C \sqsubseteq_{\mathcal{T}} \neg A$
- ⌘ Algorithms for checking consistency w.r.t TBoxes suffice
 - ◻ Based on tableau calculus
 - ◻ Decidability is important
 - ◻ Complexity between P and ExpTime

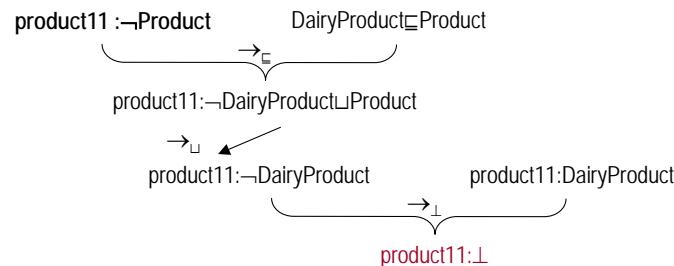
Instance check

- ⌘ .. of an individual a and a concept C w.r.t. a KB Σ
 - ◻ Is $a:C$ derivable from Σ ? Or equivalently,
 - ◻ Is $\Sigma \cup \{a:\neg C\}$ consistent?

\mathcal{ALC} -based KR&R systems: example of instance check

⌘ $\Sigma = \text{DairyProduct} \sqsubseteq \text{Product}$, $\text{product11} : \text{DairyProduct}$, etc.

- ☒ Is $\text{product11} : \text{Product}$ derivable from Σ ?
Or equivalently
- ☒ Is $\Sigma \cup \{ \text{product11} : \neg \text{Product} \}$ consistent?



DL-based KR&R systems: non-standard reasoning tasks

Most Specific Concept (MSC)

Nebel, B. (1990). *Reasoning and Revision in Hybrid Representation Systems*. New York: Springer.

- ⌘ Intuitively, the MSC of individuals in an ABox is a concept description that represents all the properties of the individuals including the concept assertions they occur in and their relationship to other individuals
- ⌘ The existence of MSC is not guaranteed for all DLs
 - ☒ Approximation of MSC is possible!
- ⌘ However, if the MSC exists, it is uniquely determined up to equivalence

DL-based KR&R systems: non-standard reasoning tasks (2)

Least Common Subsumer (LCS)

W.W. Cohen, A. Borgida, & H. Hirsh (1992). *Computing Least Common Subsumers in Description Logics*. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92), pages 754-760. AAAI Press/MIT Press.

- ⌘ The LCS of a given sequence of concept descriptions is
 - ◻ *Intuitively*, a concept description that represents the properties that all the elements of the sequence have in common
 - ◻ *More formally*, the MSC description that subsumes the given concept descriptions
- ⌘ The existence of the LCS for a given sequence of concept descriptions is not guaranteed but ..
- ⌘ .. if an LCS exists, then it is uniquely determined up to equivalence

Dr. Francesca A. Lisi

37

Back to OWL DL: DL syntax

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \dots \sqcap C_n$	Human \sqcap Male	$C_1(x) \wedge \dots \wedge C_n(x)$
unionOf	$C_1 \sqcup \dots \sqcup C_n$	Doctor \sqcup Lawyer	$C_1(x) \vee \dots \vee C_n(x)$
complementOf	$\neg C$	\neg Male	$\neg C(x)$
oneOf	$\{x_1\} \sqcup \dots \sqcup \{x_n\}$	{john} \sqcup {mary}	$x = x_1 \vee \dots \vee x = x_n$
allValuesFrom	$\forall P.C$	\forall hasChild.Doctor	$\forall y.P(x, y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	\exists hasChild.Lawyer	$\exists y.P(x, y) \wedge C(y)$
maxCardinality	$\leq n P$	≤ 1 hasChild	$\exists \leq^n y.P(x, y)$
minCardinality	$\geq n P$	≥ 2 hasChild	$\exists \geq^n y.P(x, y)$

- ⌘ C is a concept (class); P is a role (property); x is an individual name
- ⌘ XMLS **datatypes** as well as classes in $\forall P.C$ and $\exists P.C$

◻ Restricted form of DL **concrete domains**

Dr. Francesca A. Lisi

38

Back to OWL DL: DL syntax (2)

OWL Syntax	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	Man \equiv Human \sqcap Male
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter \sqsubseteq hasChild
equivalentProperty	$P_1 \equiv P_2$	cost \equiv price
transitiveProperty	$P^+ \sqsubseteq P$	ancestor ⁺ \sqsubseteq ancestor

OWL Syntax	DL Syntax	Example
type	$a : C$	John : Happy-Father
property	$\langle a, b \rangle : R$	$\langle \text{John}, \text{Mary} \rangle : \text{has-child}$

⌘ OWL ontology equivalent to DL KB (Tbox + Abox)

Dr. Francesca A. Lisi

39

Back to OWL DL: an example

⌘ Dairy products are products

```
<owl:Class rdf:ID="DairyProduct">
  <rdfs:subClassOf rdf:about="#Product"/>
</rdfs:subClassOf>
</owl:Class>
```

⌘ European customers are customers living in European countries

```
<owl:Class rdf:ID="EuropeanCustomer">
  <owl:equivalentClass/>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Customer"/>
    <owl:restriction/>
      <owl:onProperty rdf:Resource="#livesIn"/>
      <owl:allValuesFrom rdf:resource="#EuropeanCountry"/>
    </owl:allValuesFrom>
  </owl:restriction>
</owl:intersectionOf>
</owl:equivalentClass>
</owl:Class>
```


Dr. Francesca A. Lisi

40

Description Logics: Bibliography (only the essential)

- ⌘ F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (2003). *The Description Logic Handbook: Theory, Implementation, Applications*. Cambridge University Press, Cambridge, UK.
- ⌘ R. Kusters (2001). *Non-Standard Inferences in Description Logics*. Volume 2100 of Lecture Notes in Artificial Intelligence. Springer-Verlag.
- ⌘ M. Schmidt-Schauß & G. Smolka (1991). *Attributive concept descriptions with complements*. Artificial Intelligence, 48 (1): 1-26.

- ⌘ On-line material: <http://dl.kr.org/courses.html>

- ⌘ C. Peltason (1991). The BACK system—an overview. *SIGART Bull.* 2, 3 (Jun. 1991), 114-119.
- ⌘ CLASSIC: <http://www.bell-labs.com/project/classic/>

Part I: Overview

- ⌘ KR systems based on Description Logics
- ⌘ *KR systems combining Description Logics and Horn Clausal Logic (fragments)*

RuleML (Rule Markup Language)

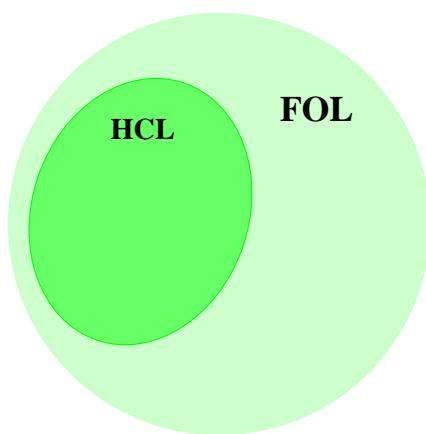
- ⌘ Developed to express both forward (bottom-up) and backward (top-down) rules in XML for deduction, rewriting, and further inferential-transformational tasks.
- ⌘ Based on Datalog (function-free fragment of Horn Clausal Logic)
- ⌘ Defined by the Rule Markup Initiative (an open network of individuals and groups from both industry and academia)

✉ <http://www.ruleml.org/>

Dr. Francesca A. Lisi

43

What is Horn Clausal Logic?



- ⌘ Horn clausal logic (HCL) is the FOL fragment that contains universally quantified disjunctions of literals with at most one positive literal
- ⌘ It is at the basis of Logic Programming and Deductive Databases

Dr. Francesca A. Lisi

44

HCL syntax

- ⌘ Clausal language \mathcal{L} = the set of constant, variable, functor and predicate symbols
- ⌘ Term: Constant / Variable / Function applied to a term
- ⌘ Atom: Predicate applied to n terms
- ⌘ Literal: (negated) atom
- ⌘ Horn Clause allows the two following equivalent notations
 - ◻ $\forall X \forall Y (p(X, Y) \vee \neg q(X, a) \vee \neg r(Y, f(a)))$
 - ◻ $p(X, Y) \leftarrow q(X, a), r(Y, f(a))$
- ⌘ Definite clause (rule): only one literal in the head
- ⌘ Unit clause (fact): rule without head

45

HCL Semantics

Herbrand model theory

- ⌘ Herbrand universe U_H = the set of all ground terms that can be formed out from the constants and function symbols in \mathcal{L}
- ⌘ Herbrand base B_H = the set of all ground atoms that can be formed out from terms in U_H and predicates in \mathcal{L}
- ⌘ Herbrand interpretation I_H = subset of B_H containing all atoms that are true in I_H

HCL Deduction Rules

SLD-resolution

2 opposite literals (up to a substitution) : $l_i\theta_1 = \neg k_j\theta_2$

$l_1 \vee \dots \vee l_i \vee \dots \vee l_n$ $k_1 \vee \dots \vee k_j \vee \dots \vee k_m$

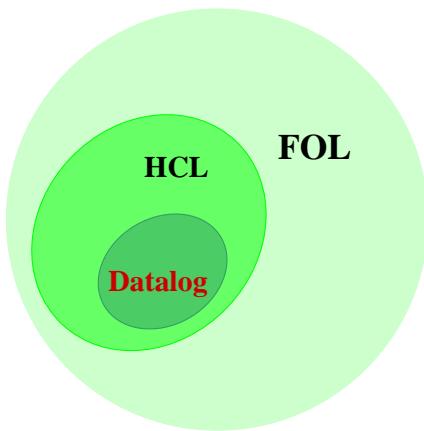
$(l_1 \vee l_2 \vee \dots \vee l_{i-1} \vee l_{i+1} \vee \dots \vee l_n \vee k_1 \vee k_{j-1} \vee k_{j+1} \dots \vee k_m) \theta_1\theta_2$

e.g., $p(X) :- q(X)$ and $q(X) :- r(X,Y)$ yield $p(X) :- r(X,Y)$
 $p(X) :- q(X)$ and $q(a)$ yield $p(a)$.

⌘ complete by refutation!

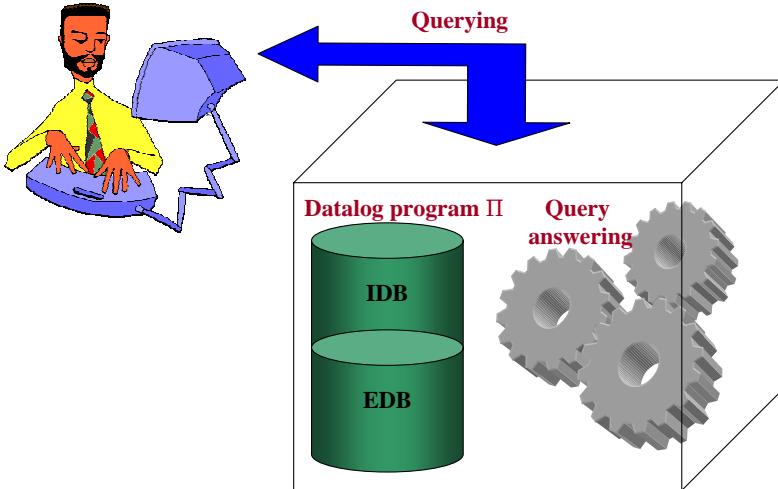
Datalog

S. Ceri, G. Gottlob, & L. Tanca (1990). *Logic Programming and Databases*. Springer.



- ⌘ It is a function-free fragment of HCL (more precisely of definite clauses)
- ⌘ It is used as logical language for relational databases
- ⌘ Query answering by SLD-refutation

Deductive databases



Closed World Assumption (CWA)

- # The information in a database is generally considered to be complete (*closed world*)
- # A database instance represents exactly one interpretation, namely the one where classes and relations in the schema are interpreted by the objects and the tuples in the instance
- # Negation As Failure: what is unknown is false

Datalog: example of query answering

⌘ $\Pi =$ item(OrderID, ProductID) \leftarrow orderDetail(OrderID, ProductID, _, _, _)
orderDetail(order10248, product11, '£14', 12, 0.00)
Etc.

☒ Is item(order10248, product11) derivable from Π ?

☒ Is $\Pi \cup \{\neg \text{item}(\text{order}10248, \text{product}11)\}$ consistent?

$\leftarrow \text{item}(\text{order10248}, \text{product11}) \quad \text{item}(\text{OrderID}, \text{ProductID}) \leftarrow \text{orderDetail}(\text{OrderID}, \text{ProductID}, _, _)$

{OrderID/order10248, ProductID/ product11 }

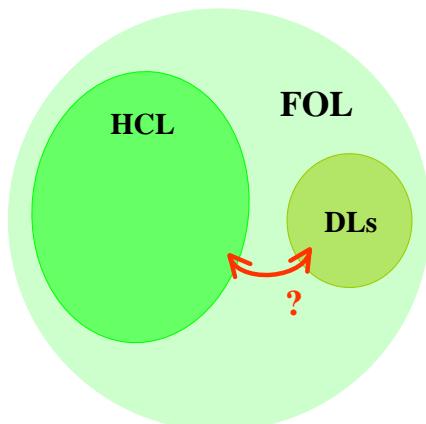
$\leftarrow \text{orderDetail}(\text{order10248}, \text{product11}, _, _, _)$ $\text{orderDetail}(\text{order10248}, \text{product11}, '£14', 12, 0.00)$

Dr. Francesca A. Lisi

51

DLs and HCL

A. Borgida (1996). On the relative expressiveness of Description Logics and Predicate Logics. *Artificial Intelligence*, 82: 353-367.



- ⌘ HCL and DLs can not be compared wrt expressive power
 - ⌘ No relations of arbitrary arity or arbitrary joins between relations in DLs
 - ⌘ No exist. quant. in HCL
- ⌘ Can they be combined?

Hybrid DL-HCL KR&R Systems

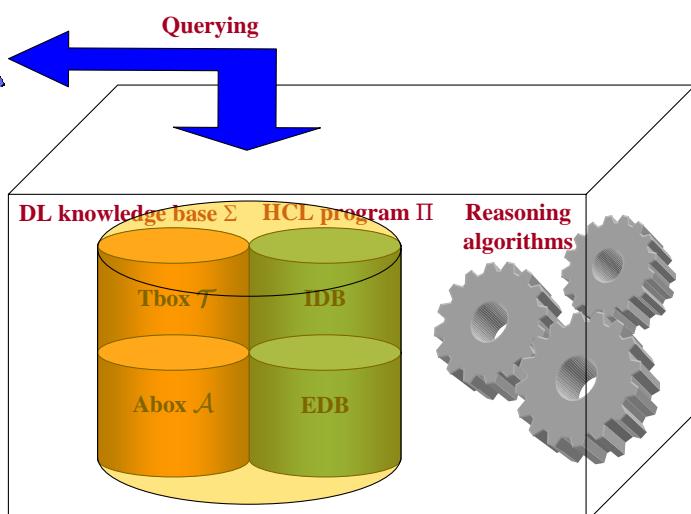
Levy & M.-C. Rousset (1998). Combining Horn rules and Description Logics in CARIN. *Artificial Intelligence*, 104: 165-209.

F. Donini et al. (1998). \mathcal{AL} -log: Integrating Datalog and Description Logics. *J. of Intelligent Systems*, 10(3):227-252.

- ⌘ It allows more expressive and deductive power
 - ⌘ CARIN is a family of powerful hybrid languages
 - ⌘ \mathcal{AL} -log is less powerful than CARIN

- ⌘ It can easily lead to undecidability if unrestricted
 - ⌘ Some CARIN languages are decidable
 - ⌘ \mathcal{AL} -log is decidable

Hybrid DL-HCL KR&R systems



\mathcal{AL} -log syntax

$$\mathcal{B} = \langle \Sigma, \Pi \rangle$$

\mathcal{ALC} knowledge base

constrained Datalog program

constrained Datalog clauses

where α_i are Datalog literals and γ_j are constraints (\mathcal{ALC} concepts from Σ used as “typing constraints” for variables)

⌘ item(OrderID, ProductID) \leftarrow orderDetail(OrderID, ProductID, ..., ...)
& OrderID:Order, ProductID:Product

⌘ Safeness conditions:

- ◻ Only positive Datalog literals in the body
- ◻ Only one Datalog literal in the head
- ◻ Constraints must refer to variables occurring in the Datalog part
- ◻ Variables in the Datalog part can be constrained

Dr. Francesca A. Lisi

55

\mathcal{AL} -log semantics

$$\mathcal{I} = (I_O, I_H)$$

interpretation for Σ

Herbrand interpretation for Π_D

⌘ \mathcal{I} satisfies \mathcal{B} iff

- ◻ it satisfies Σ , and
- ◻ for each clause $\alpha_0 \leftarrow \alpha_1, \dots, \alpha_m \ \& \ \gamma_1, \dots, \gamma_n$, for each of its ground instances $\alpha'_0 \leftarrow \alpha'_1, \dots, \alpha'_m \ \& \ \gamma'_1, \dots, \gamma'_n$, either there exists one γ'_i , $1 \leq i \leq n$, that is not satisfied by \mathcal{I} or $\alpha'_0 \leftarrow \alpha'_1, \dots, \alpha'_m$ is satisfied by \mathcal{I}

⌘ OWA of \mathcal{ALC} and CWA of Datalog do not interfere (safeness)

⌘ UNA holds for \mathcal{ALC} and *ground* Datalog

Dr. Francesca A. Lisi

56

\mathcal{AL} -log reasoning

Query answering

- ⌘ Atomic queries (only Datalog)
- ⌘ Constrained SLD-resolution = SLD-resolution (Datalog part) + tableau calculus (\mathcal{ALC} part)
 - ▣ decidable
 - ▣ Sound and complete by refutation
- ⌘ Queries are answered by constrained SLD-refutation
 - ▣ For each ground instance Q' of the query Q ,
 - ▣ collect the set of all constrained SLD-derivations d_1, d_2, \dots, d_m of bounded length (with $d_i = Q'_{0..n_i}$) for Q' in Σ
 - ▣ Then check whether $\Sigma \models \text{disj}(Q'_{n_1}, \dots, Q'_{n_m})$

Dr. Francesca A. Lisi

57

\mathcal{AL} -log reasoning: example of query answering

```
← item(order10248, product11)           item(OrderID, ProductID) ← orderDetail(OrderID, ProductID, ..., ...)  
                                         & OrderID:Order, ProductID:Product  
                                         {OrderID/order10248, ProductID/product11}  
  
← orderDetail(order10248, Y, ..., ...)      orderDetail(order10248, product11, '£14', 12, 0.00)  
& order10248:Order, Y:Product            {Y/product11}  
                                         {Y/product11}  
                                         ← & order10248:Order, product11:Product
```

Assuming that this is the only SLD-derivation for the query,
the existential entailment problem boils down to prove that

$\Sigma \cup \{ \text{order10248:} \neg \text{Order, product11:} \neg \text{Product} \}$
is unsatisfiable!

Dr. Francesca A. Lisi

58

CARIN syntax and semantics

- ⌘ Σ is based on any DL (but good results for \mathcal{ALCNR})
- ⌘ Π contain Horn rules, i.e. definite clauses, where DL literals:
 - ◻ can be built from either concept or role predicates
 - ◻ are allowed in rule heads
- ⌘ The semantics naturally follows as in $\mathcal{AL}\text{-log}$

CARIN reasoning

Query answering

- ⌘ Atomic queries (built from either concept, role or ordinary predicates)
- ⌘ Constrained SLD-resolution = SLD-resolution (HCL part)
+ tableau calculus (DL part)
 - ◻ complete by refutation for non-recursive CARIN- \mathcal{ALCNR}
 - ◻ Decidable for the non-recursive case
 - ◻ Undecidable for the recursive case, unless weaken the DL part or impose rules to be role-safe

Back to SWRL

⌘ SWRL is undecidable!

⌘ Several decidable alternatives to SWRL recently proposed:

- ⌘ DL-safe rules (Motik et al., 2005)
- ⌘ r-hybrid KBs (Rosati, 2005)
- ⌘ $\mathcal{DL} + \log$ (Rosati, 2006)
- ⌘ hybrid MKNF KBs (Motik & Rosati, 2007)

Dr. Francesca A. Lisi

61

Back to SWRL: an example

```
<ruleml:imp>
  <ruleml:_body>
    <swrlx:classAtom>
      <owlx:Class owlx:name = "&Order" /> <ruleml:var> OrderID </ruleml:var>
    </swrlx:classAtom>
    <swrlx:classAtom>
      <owlx:Class owlx:name = "&Product" /> <ruleml:var> ProductID </ruleml:var>
    </swrlx:classAtom>
    <swrlx:individualPropertyAtom swrlx:property = "&orderDetail">
      <ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var> .. <ruleml:var> .. </ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml:_body>
  <ruleml:_head>
    <swrlx:individualPropertyAtom swrlx:property = "&item">
      <ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml:_head>
</ruleml:imp>
```


Dr. Francesca A. Lisi

62

Hybrid DL-HCL KR&R Systems: Bibliography

- ⌘ A. Borgida (1996). *On the relative expressiveness of Description Logics and Predicate Logics*. Artificial Intelligence, 82: 353-367.
- ⌘ F. Donini et al. (1998). *AL-log: Integrating Datalog and Description Logics*. J. of Intelligent Systems, 10(3):227-252.
- ⌘ T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits (2004). *Combining Answer Set Programming with Description Logics for the Semantic Web*. KR 2004: 141-151
- ⌘ T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, H. Tompits (2006). *Reasoning with Rules and Ontologies*. Reasoning Web 2006: 93-127
- ⌘ B.N. Grosof, I. Horrocks, R. Volz, S. Decker (2003). *Description logic programs: combining logic programs with description logic*. WWW 2003: 48-57.
- ⌘ I. Horrocks, P.F. Patel-Schneider (2004). *A proposal for an OWL rules language*. WWW 2004: 723-731.

Dr. Francesca A. Lisi

63

Hybrid DL-HCL KR&R Systems: Bibliography (2)

- ⌘ I. Horrocks, P.F. Patel-Schneider, S. Bechhofer, D. Tsarkov (2005). *OWL rules: A proposal and prototype implementation*. J. Web Sem. 3(1): 23-40.
- ⌘ A. Levy & M.-C. Rousset (1998). *Combining Horn rules and Description Logics in CARIN*. Artificial Intelligence, 104: 165-209.
- ⌘ B. Motik, I. Horrocks, R. Rosati, & U. Sattler (2006). *Can OWL and Logic Programming Live Together Happily Ever After?* In I.F. Cruz et al. (eds), Proc. of the 5th Int. Semantic Web Conference (ISWC 2006), volume 4273 of LNCS, pages 501–514. Springer.
- ⌘ B. Motik & R. Rosati (2007). *A Faithful Integration of Description Logics with Logic Programming*. In Proc. of the 20th Int. Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 477–482.
- ⌘ B. Motik, U. Sattler & R. Studer (2004). *Query Answering for OWL-DL with Rules*. In S. A. McIlraith, D. Plexousakis, & F. van Harmelen (eds), Proc. of the 3rd Int. Semantic Web Conference, volume 3298 of LNCS, pp. 549–563. Springer.

Dr. Francesca A. Lisi

64

Hybrid DL-HCL KR&R Systems: Bibliography (3)

- ⌘ R. Rosati (2005a). *On the decidability and complexity of integrating ontologies and rules*. J. Web Sem. 3(1): 61-73.
- ⌘ R. Rosati (2005b). *Semantic and Computational Advantages of the Safe Integration of Ontologies and Rules*. PPSWR 2005: 50-64
- ⌘ R. Rosati (2006). *DL+log: Tight Integration of Description Logics and Disjunctive Datalog*. KR 2006: 68-78

The Challenges of the Semantic Web to Machine Learning and Data Mining

**Part II: "Acquisition of
Ontologies and Rules for
the Semantic Web with
Inductive Logic
Programming" (1h 30m)**

Part II: Overview

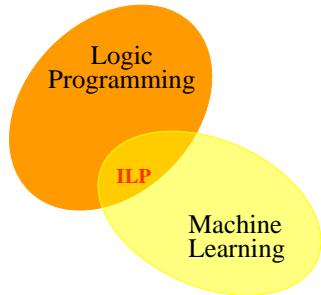
- ⌘ Introduction to Inductive Logic Programming (ILP)
- ⌘ ILP and DL representations
- ⌘ ILP and hybrid DL-HCL representations
- ⌘ ILP and the Semantic Web: Research directions

Part II: Overview

- ⌘ *Introduction to ILP*
- ⌘ ILP and DL representations
- ⌘ ILP and hybrid DL-HCL representations
- ⌘ ILP and the Semantic Web: Research directions

Inductive Logic Programming

S.-H. Nienhuys-Cheng & R. de Wolf (1997). *Foundations of Inductive Logic Programming*. LNAI Tutorial Series, Springer.



- ⌘ *Originally* Induction of rules from examples and background knowledge within the HCL framework
 - ▣ Scope of induction: discrimination
 - ▣ Class of tasks: prediction

- ⌘ *Currently* Induction of rules from observations and background knowledge within the framework of FOL (fragments)

- ▣ scope of induction: discrimination/characterization
 - ▣ task: prediction/description

Dr. Francesca A. Lisi

69

ILP Example: “Bongard problems”

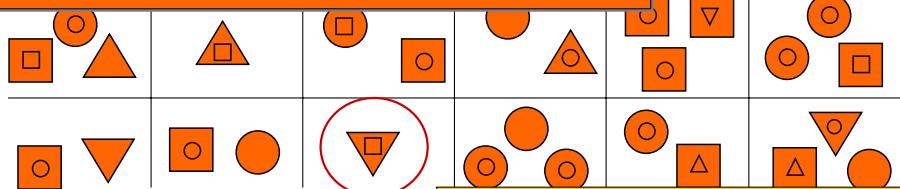
- ⌘ Simplified version of Bongard problems used as benchmarks in ILP
 - ▣ Bongard: a Russian scientist studying pattern recognition
 - ▣ Bongard problem: Given some pictures, find patterns in them
- ⌘ E.g. we want to find a set of hypotheses (clausal theory) that is complete and consistent with the following set of (positive and negative) examples
 - ▣ Complete=covers all positive examples
 - ▣ Consistent=covers no negative example

Dr. Francesca A. Lisi

70

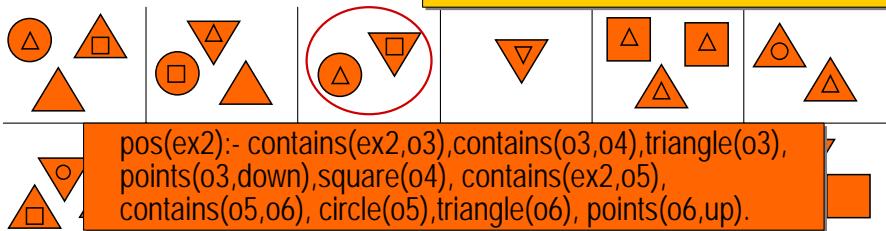
Negative examples

neg(ex1):- contains(ex1,o1),contains(o1,o2),triangle(o1),
points(o1,down),square(o2).

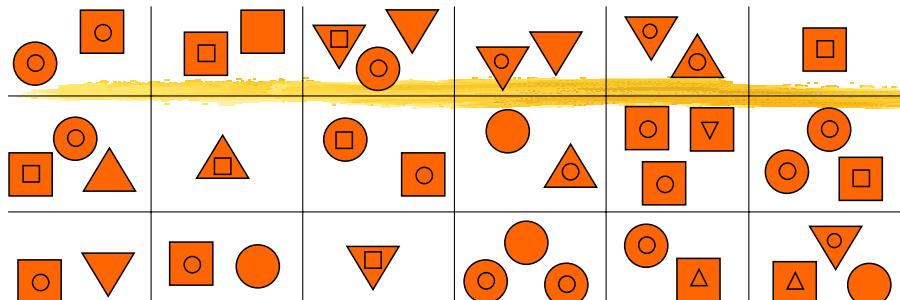


Positive examples

pos(X):- contains(X,O1),contains(O1,O2),
triangle(O1), points(O1,down),square(O2)?

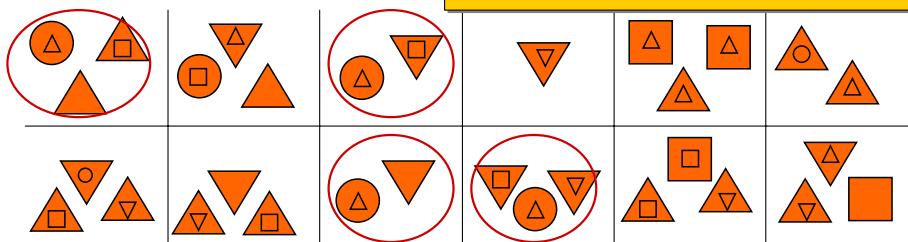


Negative examples



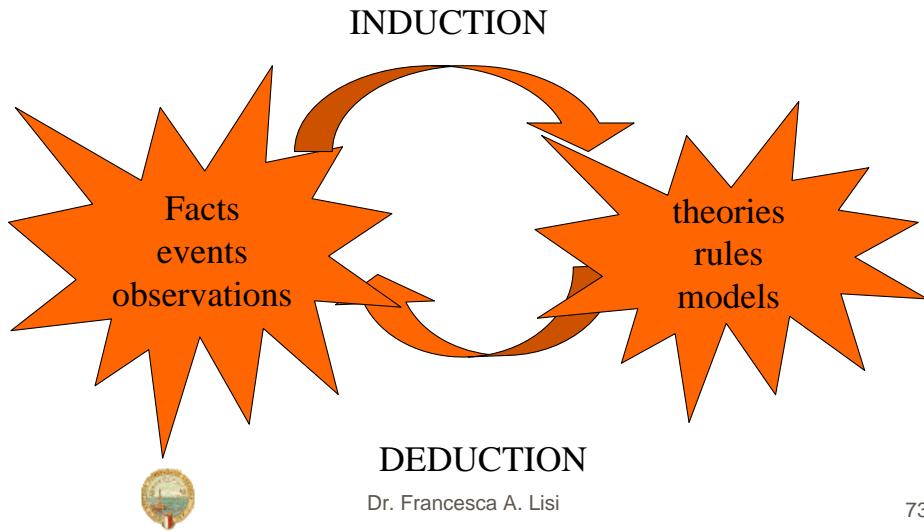
Positive examples

pos(X):- contains(X,O1),contains(O1,O2),
circle(O1),square(O2), points(O1,up)?



Induction in ILP

Induction as inverted deduction



Inverse resolution

S. Muggleton & W. Buntine (1988). *Machine invention of first-order predicates by inverting resolution*. Proc. of the 5th Int. Conf. On Machine Learning, pp. 339-352.

- ⌘ Resolution implements \vdash for sets of clauses
- ⌘ Inverting it allows to generalize a clausal theory
- ⌘ Inverse resolution is much more difficult than resolution itself
 - ⌘ different operators defined
 - ⌘ no unique results

Inverse resolution (2)

⌘ Properties of inverse resolution:

- ☒ + in principle very powerful
- ☒ - gives rise to huge search space
- ☒ - result of inverse resolution not unique
 - ☒ e.g., $\text{father}(j,p):-\text{male}(j)$ and $\text{parent}(j,p)$ yields $\text{father}(j,p):-\text{male}(j),\text{parent}(j,p)$ or $\text{father}(X,Y):-\text{male}(X),\text{parent}(X,Y)$ or ...

⌘ Need for a ordered hypothesis space

Induction in ILP (2)

Induction as generalization

- ⌘ Exploits results obtained in Concept Learning (Mitchell, 1982)
 - ☒ Generalization = search through a partially ordered space of hypotheses with the goal of finding the hypothesis that best fits the training examples
- ⌘ Provides a bunch of techniques for structuring, searching, and bounding the space of hypotheses when the hypothesis language is defined over HCL

Generality orders: θ -subsumption

G. Plotkin (1970). A note on inductive generalization. *Machine Intelligence*, 5:153-163.
G. Plotkin (1971). A further note on inductive generalization. *Machine Intelligence*, 6:101-124.

- ⌘ θ -subsumption implements $|=$ for single clauses
- ⌘ $C_1 \theta$ -subsumes C_2 (denoted $C_1 \leq_\theta C_2$) if and only if there exists a variable substitution θ such that $C_1\theta \subseteq C_2$
 - ⇒ to check this, first write clauses as disjunctions
 - ⇒ $a, b, c \leftarrow d, e, f \Leftrightarrow a \vee b \vee c \vee \neg d \vee \neg e \vee \neg f$
 - ⇒ then try to replace variables with constants or other variables
- ⌘ Most often used in ILP
- ⌘ Syntactic generality!!

Generality orders: θ -subsumption (2)

Logical properties

- ⌘ Sound: if $c_1 \theta$ -subsumes c_2 then $c_1 |= c_2$
- ⌘ Incomplete: possibly $c_1 |= c_2$ without $c_1 \theta$ -subsuming c_2 (but only for recursive clauses)
 - ⇒ $c_1 : p(f(X)) :- p(X)$
 - ⇒ $c_2 : p(f(f(X))) :- p(X)$
- ⌘ Checking θ -subsumption is decidable but NP-complete

Generality orders: θ -subsumption (3)

Algebraic properties

- ⌘ It is a semi-order relation
 - ▣ I.e. transitive and reflexive, not anti-symmetric
- ⌘ It generates equivalence classes
 - ▣ equivalence class: $c_1 \sim c_2$ iff $c_1 \leq_\theta c_2$ and $c_2 \leq_\theta c_1$
 - ▣ c_1 and c_2 are then called *syntactic variants*
 - ▣ c_1 is *reduced clause* of c_2 iff c_1 contains minimal subset of literals of c_2 that is still equivalent with c_2
 - ▣ each equivalence class represented by its reduced clause

Generality orders: θ -subsumption (4)

Algebraic properties (cont.)

- ⌘ It generates a partial order on those equivalence classes
 - ▣ If c_1 and c_2 in different equivalence classes, either $c_1 \leq_\theta c_2$ or $c_2 \leq_\theta c_1$ or neither => anti-symmetry => partial order
- ⌘ Thus, reduced clauses form a lattice
 - ▣ Least/greatest upper/lower bound of two clauses always exists and is unique
 - ▣ Infinite chains $c_1 \leq_\theta c_2 \leq_\theta c_3 \leq_\theta \dots \leq_\theta c$ exist
- ⌘ Looking for good hypothesis = traversing this lattice

Generality orders: generalized subsumption

W. Buntine (1988). Generalized subsumption and its applications to induction and redundancy. *Artificial Intelligence*, 36(2): 149-176.

- ⌘ \mathcal{B} background knowledge
- ⌘ C_1, C_2 two definite clauses
- ⌘ σ a Skolem substitution for C_2 w.r.t. $\{C_1\} \cup \mathcal{B}$

$C_1 \geq_{\mathcal{B}} C_2$ iff there exists a substitution θ for C_1 such that

- ⌘ $\text{head}(C_1)\theta = \text{head}(C_2)$
- ⌘ $\mathcal{B} \cup \text{body}(C_2)\sigma \vdash \text{body}(C_1)\theta\sigma$
- ⌘ $\text{body}(C_1)\theta\sigma$ is ground.

Dr. Francesca A. Lisi

81

Generality orders: generalized subsumption (2)

- ⌘ Background knowledge \mathcal{B}

- ─ pet(X) :- cat(X)
- ─ pet(X) :- dog(X)
- ─ small(X) :- cat(X)

- ⌘ Clauses:

- ─ $C_1 = \text{cuddlypet}(X) :- \text{small}(X), \text{pet}(X)$
- ─ $C_2 = \text{cuddlypet}(X) :- \text{cat}(X)$

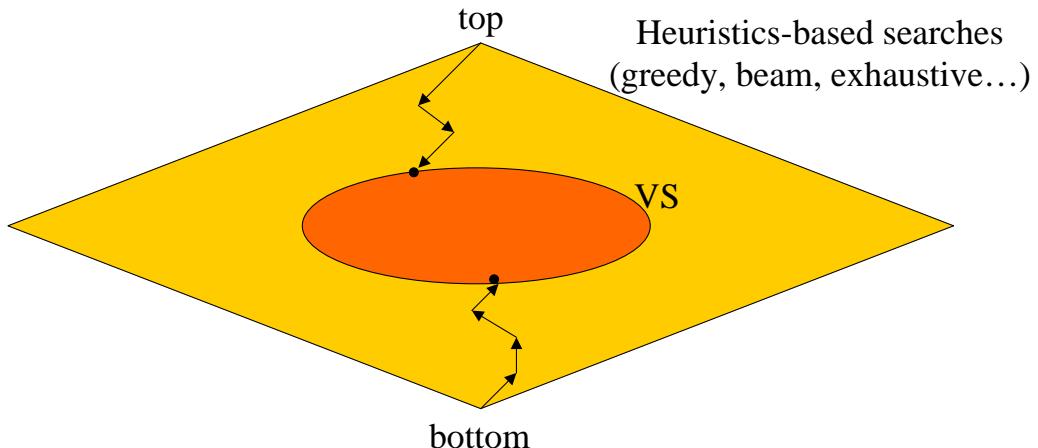
- ⌘ Semantic generality!!

- ─ $C_1 \geq_{\mathcal{B}} C_2$
- ─ θ - subsumption fails

Dr. Francesca A. Lisi

82

Refinement operators



Refinement operators: properties

- ⌘ How to traverse hypothesis space so that
 - ◻ no hypotheses are generated more than once?
 - ◻ no hypotheses are skipped?
- ⌘ Properties of refinement operators
 - ◻ globally complete: each point in lattice is reachable from top
 - ◻ locally complete: each point directly below c is in $\rho(c)$ (useful for greedy systems)
 - ◻ optimal: no point in lattice is reached twice (useful for exhaustive systems)
 - ◻ minimal, proper,

Refinement operators: Igg

G. Plotkin (1970). A note on inductive generalization. *Machine Intelligence*, 5:153-163.

⌘ Bottom-up search in clausal spaces

- ▣ Starts from 2 clauses and compute least general generalisation (Igg)
- ▣ i.e., given 2 clauses, return most specific single clause that is more general than both of them
- ⌘ We shall consider only the case of clausal spaces ordered according to θ -subsumption
 - ▣ Igg under θ -subsumption

Refinement operators: Igg (2)

⌘ Definition of Igg of terms:

- ▣ (let s_i, t_j denote any term, V a variable)
- ▣ $\text{Igg}(f(s_1, \dots, s_n), f(t_1, \dots, t_n)) = f(\text{Igg}(s_1, t_1), \dots, \text{Igg}(s_n, t_n))$
- ▣ $\text{Igg}(f(s_1, \dots, s_n), g(t_1, \dots, t_n)) = V$

⌘ Definition of Igg of literals:

- ▣ $\text{Igg}(p(s_1, \dots, s_n), p(t_1, \dots, t_n)) = p(\text{Igg}(s_1, t_1), \dots, \text{Igg}(s_n, t_n))$
- ▣ $\text{Igg}(\neg p(\dots), \neg p(\dots)) = \neg \text{Igg}(p(\dots), p(\dots))$
- ▣ $\text{Igg}(p(s_1, \dots, s_n), q(t_1, \dots, t_n))$ is undefined
- ▣ $\text{Igg}(p(\dots), \neg p(\dots))$ and $\text{Igg}(\neg p(\dots), p(\dots))$ are undefined

⌘ Definition of Igg of clauses:

- ▣ $\text{Igg}(c_1, c_2) = \{\text{Igg}(l_1, l_2) \mid l_1 \in c_1, l_2 \in c_2 \text{ and } \text{Igg}(l_1, l_2) \text{ defined}\}$

Refinement operators: relative lgg

G. Plotkin (1971). A further note on inductive generalization. *Machine Intelligence*, 6:101-124.

⌘ relative to "background theory" B

 ▣ assume B is a set of facts

⌘ $rlgg(e_1, e_2) = lgg(e_1 :- B, e_2 :- B)$

⌘ method to compute:

 ▣ change facts into clauses with body B

 ▣ compute lgg of clauses

 ▣ remove B, reduce

⌘ Used in in the ILP system Golem (Muggleton & Feng)

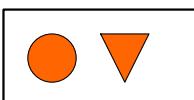
Dr. Francesca A. Lisi

87

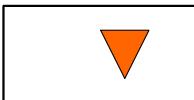
Refinement operators: example

⌘ Given the following 2 simple Bongard configurations, find least general clause that would predict both to be positive

1



2



pos(1).
contains(1,o1).
contains(1,o2).
triangle(o1).
points(o1,down).
circle(o2).

pos(2).
contains(2,o3).
triangle(o3).
points(o3,down).

Dr. Francesca A. Lisi

88

Refinement operators: example

⌘ Method 1: represent example by clause;
compute lgg of examples

```
pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),  
         points(o1,down), circle(o2).  
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).
```

```
lgg(  
  (pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down), circle(o2)) ,  
  (pos(2) :- contains(2,o3), triangle(o3), points(o3,down))  
  = pos(X) :- contains(X,Y), triangle(Y), points(Y,down)
```


Refinement operators: example

⌘ Method 2: represent class of example by
fact, other properties in background;
compute rlgg

Examples:

```
pos(1).  
pos(2).
```

Background:

```
contains(1,o1). contains(2,o3).  
contains(1,o2). triangle(o3).  
triangle(o1). points(o3,down).  
points(o1,down). circle(o2).
```

rlgg(pos(1), pos(2)) = ? (exercise)

Refinement operators: Shapiro's specialization operator

E. Shapiro (1971). *An algorithm that infers theories from facts*. Proc. of the 7th Int. Conf. on Artificial Intelligence, pp. 446-451.

- ⌘ Top down search in clausal spaces ordered according to theta-subsumption:
 - ☒ $\rho(c)$ yields set of refinements of c
 - ☒ theory: $\rho(c) = \{c' \mid c' \text{ is a maximally general specialisation of } c\}$
 - ☒ practice: $\rho(c) \subseteq \{c \cup \{l\} \mid l \text{ is a literal}\} \cup \{c\theta \mid \theta \text{ is a substitution}\}$

- ⌘ Used in many ILP systems

Dr. Francesca A. Lisi

91

Declarative bias

C. Nedellec et al. (1996). *Declarative bias in ILP*. In L. De Raedt (ed.), *Advances in Inductive Logic Programming*, IOS Press.

- ⌘ Language bias
 - ☒ Specifies and restricts the set of clauses or theories that are permitted (language of hypotheses)
- ⌘ Search bias
 - ☒ Concerns the way the system searches through the hypothesis space
- ⌘ Validation bias
 - ☒ Determines when the learned theory is acceptable, so when the learning process may stop.

Dr. Francesca A. Lisi

92

ILP logical settings

L. De Raedt, L. Dehaspe (1997). *Clausal Discovery*. Machine Learning 26(2-3): 99-146.

❖ Orthogonality of the following two dimensions

- ❖ Scope of induction
 - ❖ discriminant vs. characteristic induction
- ❖ Representation of the observations
 - ❖ learning from implications vs. learning from interpretations

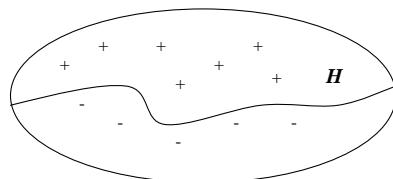
leads to 4 different logical settings for ILP

Dr. Francesca A. Lisi

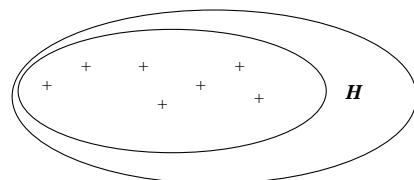
93

ILP logical settings: Predictive vs Descriptive ILP

Prediction



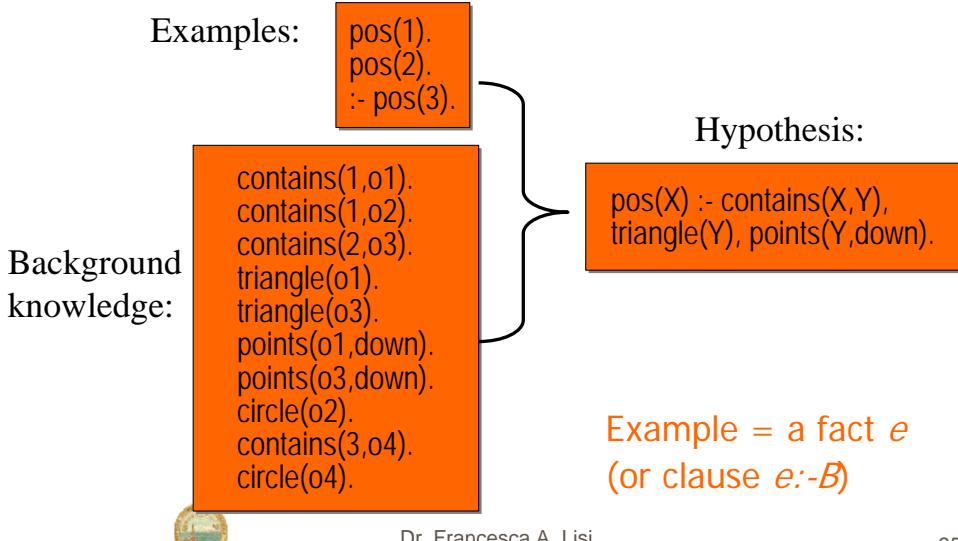
Description



Dr. Francesca A. Lisi

94

ILP logical settings: Learning from entailment



ILP logical settings: Learning from interpretations

all information that intuitively belongs to the example, is represented in the example, not in the background knowledge!

Examples:

```
pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),  
points(o1,down), circle(o2).  
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).  
:- pos(3), contains(3,o4), circle(o4).
```

Background knowledge:

```
polygon(X) :- triangle(X).  
polygon(X) :- square(X).
```

knowledge concerning the domain,
not concerning specific examples!

Hypothesis:

```
pos(X) :- contains(X,Y),  
triangle(Y), points(Y,down).
```


ILP logical settings: Learning from interpretations (3)

- Example as a set of facts (interpretation)
- CWA made *inside* interpretations

Examples:

```
pos: {contains(o1), contains(o2), triangle(o1),  
      points(o1,down), circle(o2)}  
pos: {contains(o3), triangle(o3), points(o3,down)}  
neg: {contains(o4), circle(o4)}
```

Background knowledge:

```
polygon(X) :- triangle(X).  
polygon(X) :- square(X).
```

constraint on pos

```
 $\exists Y: \text{contains}(Y), \text{triangle}(Y), \text{points}(Y, \text{down}).$ 
```

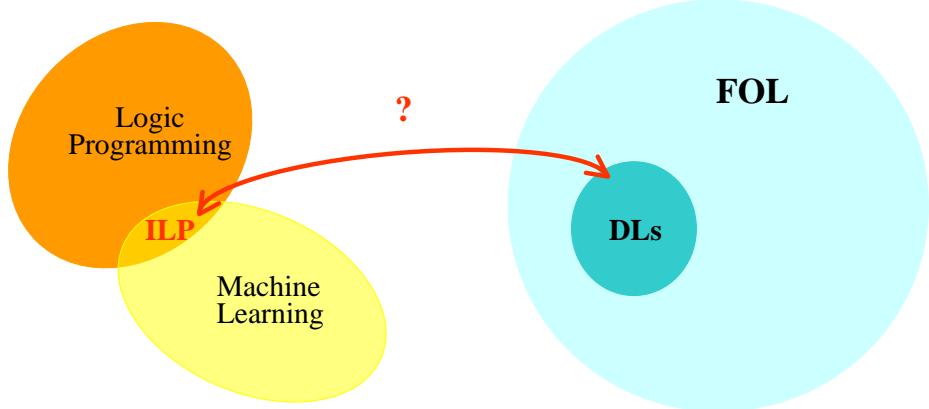

ILP logical settings: some remarks

- ⌘ When learning from interpretations
 1. You can dispose of an “example identifier”
 - ☒ but can also use standard format
 2. You assume CWA for each example description
 - ☒ i.e., example description is assumed to be complete
 3. You have class of example related to information inside example + background information, NOT to information in other examples
- ⌘ Because of 3rd property, more limited than learning from entailment
 - ☒ You cannot learn relations between examples, nor recursive clauses
- ⌘ ... but also more efficient because of 2nd and 3rd property
 - ☒ positive PAC-learnability results (De Raedt and Džeroski, 1994), vs. negative results for learning from entailment

Part II: Overview

- ⌘ Introduction to ILP
- ⌘ *ILP and DL representations*
- ⌘ ILP and hybrid DL-HCL representations
- ⌘ ILP and the Semantic Web: Research directions

Learning in DLs



Learnability of DLs

W.W. Cohen & H. Hirsh (1992). *Learnability of Description Logics*. Proc. of the Fifth Annual Workshop on Computational Learning Theory (COLT92), pp. 116-127. ACM Press.

M. Frazier & L. Pitt (1994). *CLASSIC learning*. In Proc. of the Seventh Annual Conference on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.

- ⌘ Learnability of sublanguages of CLASSIC w.r.t. the PAC learning model
- ⌘ LCS used as a means for inductive learning from examples assumed to be concept descriptions

Learning in CLASSIC

W.W. Cohen & H. Hirsh (1994). *Learning the CLASSIC Description Logic: Theoretical and Experimental Results*. Proc. of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR94), pages 121-133.

- ⌘ Supervised learning
 - ▣ Classified examples: ABox individuals
 - ▣ Goal: induce new concepts to be added to the TBox
- ⌘ Search direction: bottom-up
- ⌘ Algorithm: LCSLearn/LCSLearnDISJ
 1. Apply the MSC operator to compute the minimal Tbox generalizations of the examples
 2. Apply the LCS operator to generalize the MSC descriptions of examples
- ⌘ Limits: overly specific concept definitions

Learning in BACK

J.-U. Kietz & K. Morik (1994). *A Polynomial Approach to the Constructive Induction of Structural Knowledge*. Machine Learning 14(1): 193-217.

⌘ Unsupervised learning

- ◻ Unclassified examples: ABox individuals
- ◻ Goal: induce new concepts to be added to the TBox

⌘ Search direction: bottom-up

⌘ Algorithm: KLUSTER

1. Cluster the ABox individuals into n mutually disjoint concepts so that n supervised learning problems are obtained
2. Find a correct definition of each of these concepts as follows:
 1. Compute and evaluate the *most specific generalization* (MSG) of a concept by applying the MSC operator;
 2. Obtain the *most general discrimination* (MGD) of the concept by further generalizing the MSG.

Refinement operators for DLs

L. Badea & S.-H. Nienhuys-Cheng (2000). *A Refinement Operator for Description Logics*. In J. Cussens & A. Frisch (eds): Inductive Logic Programming, LNAI 1866, pp. 40-59

⌘ Complete and proper refinement operator for \mathcal{ALER}

⌘ No minimal refinement operators exist for \mathcal{ALER}

- ◻ Minimality of all refinement steps can be achieved except for those introducing

⌘ Complete refinement operators for \mathcal{ALER} can not be locally finite

⌘ An upward refinement operator can be obtained by inverting the arrows in the refinement rules of the downward one

Refinement operators for DLs (2)

J. Lehmann & P. Hitzler (2007b). *Foundations of Refinement Operators for Description Logics*. In: Proceedings of the 17th Int. Conf. on Inductive Logic Programming.

- ⌘ Let \mathcal{L} be a DL which allows to express $\top, \perp, \sqcap, \sqcup, \exists$ and \forall
 - ▣ E.g. \mathcal{ALC}
- ⌘ Maximal sets of properties of \mathcal{L} refinement operators
 1. {Weakly complete, complete, finite}
 2. { Weakly complete, complete, proper}
 3. { Weakly complete, non-redundant, finite}
 4. { Weakly complete, non-redundant, proper}
 5. { Non-redundant, finite, proper}
- ⌘ Application: learning in \mathcal{ALC} (Lehmann & Hitzler, 2007a)

Learning in \mathcal{ALC}

F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Knowledge-intensive induction of terminologies from metadata*. Proc. of the 3rd International Semantic Web Conference (ISWC04), volume 3298 of Springer LNCS, pp. 411-426.

- ⌘ Supervised learning
 - ▣ Classified examples: ABox individuals
 - ▣ Goal: find a correct Tbox concept definition
- ⌘ Search direction: bottom-up/top-down
- ⌘ Algorithm: YinYang
 1. Apply the MSC operator to compute the minimal Tbox generalizations of the examples
 2. Apply *downward and upward refinement operators* for \mathcal{ALC} to converge towards a correct concept definition
- ⌘ <http://www.di.uniba.it/~iannone/yinyang/>

Learning in $\mathcal{ALC}(2)$

N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Concept Formation in Expressive Description Logics*. In J.F. Boulicault et al. (eds.): Proc. of the 15th European Conference on Machine Learning, *ECML04*, pp. 99-110, Springer.

⌘ Unsupervised learning

- ✉ Unclassified examples: ABox individuals
- ✉ Goal: induce new concepts to be added to the TBox

⌘ Algorithm: CSKA

1. Cluster the ABox individuals into *mutually disjoint concepts* (see KLUSTER)
2. For each of these concepts find a correct concept definition by applying *downward and upward refinement operators* for \mathcal{ALC} (see Yin/Yang)

⌘ Application: ontology refinement

Dr. Francesca A. Lisi

107

Learning in $\mathcal{ALC}(3)$

C. d'Amato, N. Fanizzi, & F. Esposito (2006). *Reasoning by Analogy in Description Logics through Instance-based Learning*. Proc. of the 3rd Italian Semantic Web Workshop.

⌘ Algorithm: kNN-DL

- ✉ instance-based learning system
- ✉ based on structural/semantic *(dis)similarity measures*

N. Fanizzi, C. d'Amato, F. Esposito. *Instance Based Retrieval by Analogy*. SAC 2007 SDRC Track, 11-15 March 2007, Seoul, Korea

⌘ Algorithm: DiVS-kNN

- ✉ instance-based learning system
- ✉ Based on *disjunctive version space*

Dr. Francesca A. Lisi

108

Learning in $\mathcal{ALC}(4)$

N. Fanizzi & C. d'Amato (2006). *A Declarative Kernel for ALC Concept Descriptions*.

ISMIS 2006: Lecture Notes in Computer Science 4203, pp. 322-331

⌘ Task: classification

⌘ From distances to kernels

- ◻ Kernel is a similarity measure (can be obtained from distances)
- ◻ Kernel machine = algorithm parameterized by kernels

Learning in DLs: bibliography

- ⌘ J. Alvarez (1998). A Description Logic System for Learning in Complex Domains. Proc. of the 1998 Int. Workshop on Description Logics (DL'98).
- ⌘ J. Alvarez (2000a). A Formal Framework for Theory Learning using Description Logics. Proc. of Int. Workshop on Inductive Logic Programming (ILP'00), work in progress track.
- ⌘ J. Alvarez (2000b). TBox Acquisition and Information Theory. In: Proc. of the 2000 Int. Workshop on Description Logics (DL'00).
- ⌘ L. Badea & S.-H. Nienhuys-Cheng (2000a). A Refinement Operator for Description Logics. ILP 2000: 40-59
- ⌘ L. Badea & S.-H. Nienhuys-Cheng (2000b). Refining Concepts in Description Logics. Description Logics 2000: 31-44

Learning in DLs: bibliography (2)

- ⌘ W.W. Cohen, A. Borgida, & H. Hirsh (1992). *Computing Least Common Subsumers in Description Logics*. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92), pages 754-760. AAAI Press/MIT Press.
- ⌘ W.W. Cohen & H. Hirsh (1992). *Learnability of Description Logics*. Proc. of the Fifth Annual Workshop on Computational Learning Theory (COLT92), pages 116-127. ACM Press.
- ⌘ W.W. Cohen & H. Hirsh (1994a). *Learning the CLASSIC Description Logic: Theoretical and Experimental Results*. Proc. of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR94), pages 121-133.
- ⌘ W.W. Cohen & H. Hirsh (1994b). *The Learnability of Description Logics with Equality Constraints*. Machine Learning, 17(2):169-199.

Learning in DLs: bibliography (3)

- ⌘ C. d'Amato, N. Fanizzi, & F. Esposito (2006). *A dissimilarity measure for ALC concept descriptions*. SAC 2006: 1695-1699
- ⌘ C. d'Amato & N. Fanizzi (2006). *Lazy Learning from Terminological Knowledge Bases*. Proc. 16th International Symposium on Methodologies for Intelligent Systems, 27-29 September 2006, Bari, Italy
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2004). *Knowledge-Intensive Induction of Terminologies from Metadata*. International Semantic Web Conference 2004: 441-455
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2005). *A Counterfactual-Based Learning Algorithm for Description Logic*. AI*IA 2005: 406-417
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro: *Induction and Revision of Terminologies*. ECAI 2004: 1007-1008

Learning in DLs: bibliography (4)

- ⌘ N. Fanizzi & C. d'Amato (2006). *A Declarative Kernel for ALC Concept Descriptions*. ISMIS: 322-331.
- ⌘ N. Fanizzi, S. Ferilli, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Downward Refinement in the ALCN Description Logic*. HIS 2004: 68-73.
- ⌘ N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2004). *Concept Formation in Expressive Description Logics*. ECML 2004: 99-110.
- ⌘ M. Frazier & L. Pitt (1994). *CLASSIC learning*. In Proceedings of the Seventh Annual Conference on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.
- ⌘ M. Frazier & L. Pitt (1996). *CLASSIC Learning*. Machine Learning, 25 (2-3): 151-193.

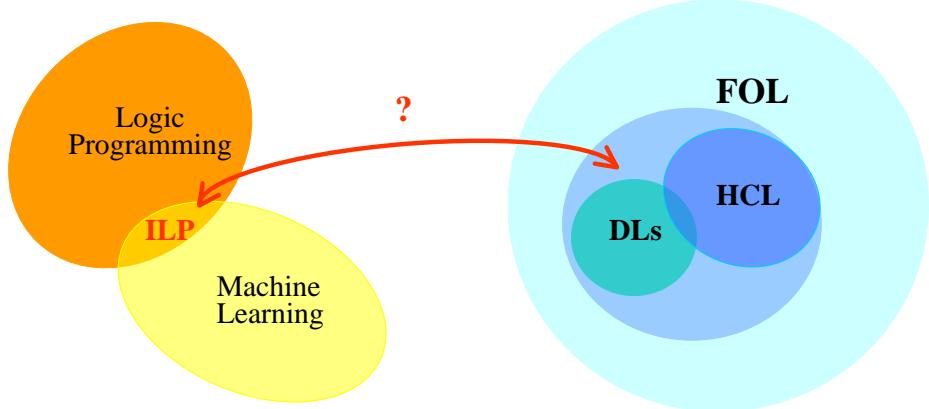
Learning in DLs: bibliography (5)

- ⌘ L. Iannone, I. Palmisano and N. Fanizzi (2007). *An algorithm based on counterfactuals for concept learning in the Semantic Web*. Applied Intelligence, 26(2): 139-159.
- ⌘ J. Lehmann & P. Hitzler (2007a). *A Refinement Operator Based Learning Algorithm for the ALC Description Logic*. In: Proceedings of the 17th International Conference on Inductive Logic Programming (ILP) 2007
- ⌘ J. Lehmann & P. Hitzler (2007b). *Foundations of Refinement Operators for Description Logics*. In: Proceedings of the 17th International Conference on Inductive Logic Programming (ILP) 2007
- ⌘ V. Ventos, P. Brézellec, H. Soldano, D. Bouthinon (1998). *Learning Concepts in C-CLASSIC(delta/epsilon)*. Description Logics 1998

Part II: Overview

- ⌘ Introduction to ILP
- ⌘ ILP and DL representations
- ⌘ *ILP and hybrid DL-HCL representations*
- ⌘ ILP and the Semantic Web: Research directions

Learning in DL-HCL



Learning in CARIN- \mathcal{ALN}

C. Rouveiro & V. Ventos (2000). *Towards learning in CARIN- \mathcal{ALN}* . In J. Cussens & A. Frisch (eds): Inductive Logic Programming, Springer LNAI 1866, 191-208.

- # Scope of induction: prediction
- # Logical setting: learning from interpretations
- # Language of hypotheses: definite clauses in CARIN- \mathcal{ALN}
- # Generality order: adaptation of Buntine's generalized subsumption to CARIN- \mathcal{ALN}
- # Coverage relations: query answering in CARIN- \mathcal{ALN}

Learning in CARIN- \mathcal{ALN} (2)

J.-U. Kietz (2003). *Learnability of description logic programs*. In S. Matwin and C. Sammut (Eds.), Inductive Logic Programming, Springer LNAI 2583, 117-132.

- # Method for transforming CARIN- \mathcal{ALN} into Datalog extended with numerical constraints
- # Transfer of learnability results known for ILP to learning in CARIN- \mathcal{ALN}

Learning in $\mathcal{AL}\text{-log}$

F.A. Lisi (2005). *Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in $\mathcal{AL}\text{-log}$* . In F. Fages and S. Soliman (Eds.), *Principles and Practice of Semantic Web Reasoning*, Springer LNCS 3703, 118-132.

- ⌘ **Scope of induction:** prediction/description
- ⌘ **Logical setting:** learning from interpretations/learning from implications
- ⌘ **Language of hypotheses:** constrained Datalog clauses
- ⌘ **Generality order:** adaptation of Buntine's generalized subsumption to $\mathcal{AL}\text{-log}$
- ⌘ **Coverage relations:** query answering in $\mathcal{AL}\text{-log}$

Learning in DL-HCL: Bibliography

- ⌘ A.M. Frisch (1991). *The Substitutional Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning*. *Artif. Intell.* 49(1-3): 161-198.
- ⌘ A.M. Frisch (1999). *Sorted downward refinement: Building background knowledge into a refinement operator for inductive logic programming*. In S. Dzeroski and P.A. Flach (Eds.), *Inductive Logic Programming*, Springer LNAI 1634, 104-115.
- ⌘ J.-U. Kietz (2003). *Learnability of description logic programs*. In S. Matwin and C. Sammut (Eds.), *Inductive Logic Programming*, Springer LNAI 2583, 117-132.
- ⌘ F.A. Lisi (2005). *Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in $\mathcal{AL}\text{-log}$* . In F. Fages and S. Soliman (Eds.), *Principles and Practice of Semantic Web Reasoning*, Springer LNCS 3703, 118-132.

Learning in DL-HCL: Bibliography (2)

- ⌘ F.A. Lisi (2006). *Practice of Inductive Reasoning on the Semantic Web*. In: J.J. Alferes, J. Bailey, W. May, U. Schwertel (Eds.), *Principles and Practice of Semantic Web Reasoning*, Springer LNCS 4187, 242-256.
- ⌘ F.A. Lisi & F. Esposito (2004). *Efficient Evaluation of Candidate Hypotheses in \mathcal{AL} -log*. In R. Camacho, R. King, and A. Srinivasan (Eds.), *Inductive Logic Programming*, Springer LNAI 3194, 216-233.
- ⌘ F.A. Lisi & F. Esposito (2006). *Two Orthogonal Biases for Choosing the Intensions of Emerging Concepts in Ontology Refinement*. In G. Brewka, S. Coradeschi, A. Perini & P. Traverso (Eds.): *ECAI 2006. Proc. of the 17th European Conf. on Artificial Intelligence*, IOS Press: Amsterdam, 765-766.
- ⌘ F.A. Lisi & F. Esposito (2007). *On the Missing Link between Frequent Pattern Discovery and Concept Formation*. To appear in: S. Muggleton, R. Otero & A. Tamaddoni-Nezhad (Eds.), *Inductive Logic Programming*, Springer LNAI ?, ?,?.

Dr. Francesca A. Lisi

121

Learning in DL-HCL: Bibliography (3)

- ⌘ F.A. Lisi & D. Malerba (2003). *Ideal Refinement of Descriptions in \mathcal{AL} -log*. In T. Horvath and A. Yamamoto (Eds.), *Inductive Logic Programming*, LNAI 2835, 215-232, Springer: Berlin.
- ⌘ F.A. Lisi & D. Malerba (2003). *Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning*. In A. Cappelli and F. Turini (Eds.), *AI*IA 2003: Advances in Artificial Intelligence*, LNAI 2829, 53-64, Springer: Berlin.
- ⌘ F.A. Lisi & D. Malerba (2004). *Inducing Multi-Level Association Rules from Multiple Relations*. *Machine Learning*, 55:175-210.
- ⌘ C. Rouveirol & V. Ventos (2000). *Towards learning in CARIN- \mathcal{ALN}* . In J. Cussens & A. Frisch (eds): *Inductive Logic Programming*, Springer LNAI 1866, 191-208.

Dr. Francesca A. Lisi

122

Part II: Overview

- ⌘ Introduction to ILP
- ⌘ ILP and DL representations
- ⌘ ILP and hybrid DL-HCL representations
- ⌘ *ILP and the Semantic Web: Research directions*

ILP and the Semantic Web: research directions in theory

- ⌘ ILP frameworks for learning/mining in more expressive DLs and DL-HCL hybridizations
 - ▣ closer to OWL and SWRL
- ⌘ ILP frameworks for learning/mining under uncertainty and vagueness
 - ▣ closer to real-world ontologies
- ⌘ ILP frameworks for learning/mining from multiple contexts
 - ▣ Closer to the real scenario of the Semantic Web

ILP and the Semantic Web: research directions in practice

- ⌘ Efficient implementations
- ⌘ Interfacing of ILP systems with specialized reasoners for the Semantic Web
 - ▣ (Fuzzy) OWL/SWRL reasoners
- ⌘ Experimental work on big OWL/SWRL ontologies

ILP and the Semantic Web: applications for learning in DLs

- ⌘ Ontology Refinement
- ⌘ Ontology Matching
- ⌘ Ontology Merging
- ⌘ FOAF
- ⌘ Semantic retrieval
- ⌘ Etc.

ILP and the Semantic Web: applications for learning in DL-HCL

⌘ Ontology Refinement

- ◻ Some concepts are better defined with rules

⌘ Ontology Mapping

⌘ Semantic Web Services

⌘ Business rules

⌘ Policy rules

⌘ Etc.

Potentially all RIF use cases!

Dr. Francesca A. Lisi

127

Further resources

⌘ Tutorials on the Semantic Web

- ◻ <http://www.w3.org/2001/sw/BestPractices/Tutorials>
- ◻ <http://km.aifb.uni-karlsruhe.de/ws/prowl2006/>
- ◻ <http://rease.semanticweb.org/>

⌘ Tutorials on Machine Learning for the Semantic Web

- ◻ http://www.aifb.uni-karlsruhe.de/WBS/pci/OL_Tutorial_ECML_PKDD_05/
- ◻ <http://www.uni-koblenz.de/~staab/Research/Events/ICML05tutorial/icml05tutorial.pdf>
- ◻ <http://www.smi.ucd.ie/Dagstuhl-MLSW/proceedings/>
- ◻ <http://ingenieur.kahosl.be/projecten/swa2002/slides/hendrik%20blockeel/Blockeel.ppt>

Dr. Francesca A. Lisi

128