

The Challenges of the Semantic Web to Machine Learning and Data Mining

Francesca A. Lisi

lisi@di.uniba.it

LACAM group
Dipartimento di Informatica

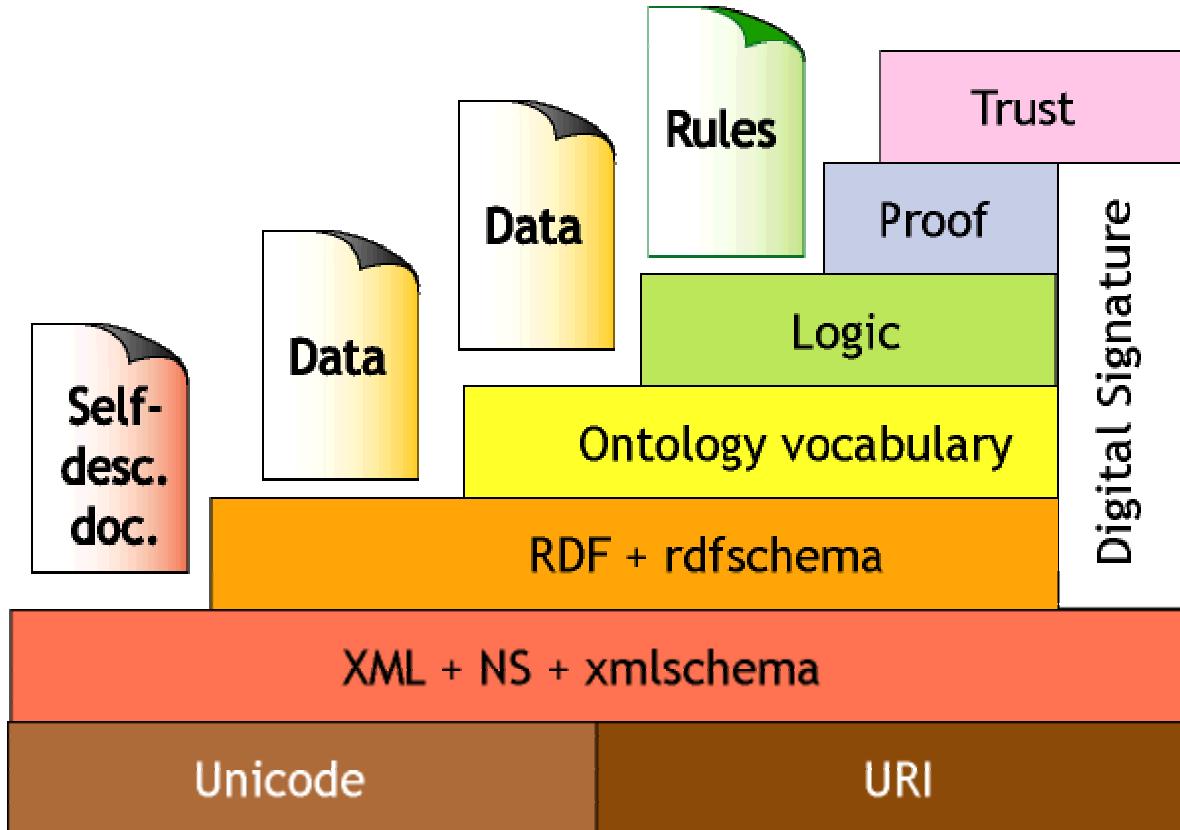
Università degli Studi di Bari
Via Orabona, 4 - 70126 Bari - Italy

The Semantic Web

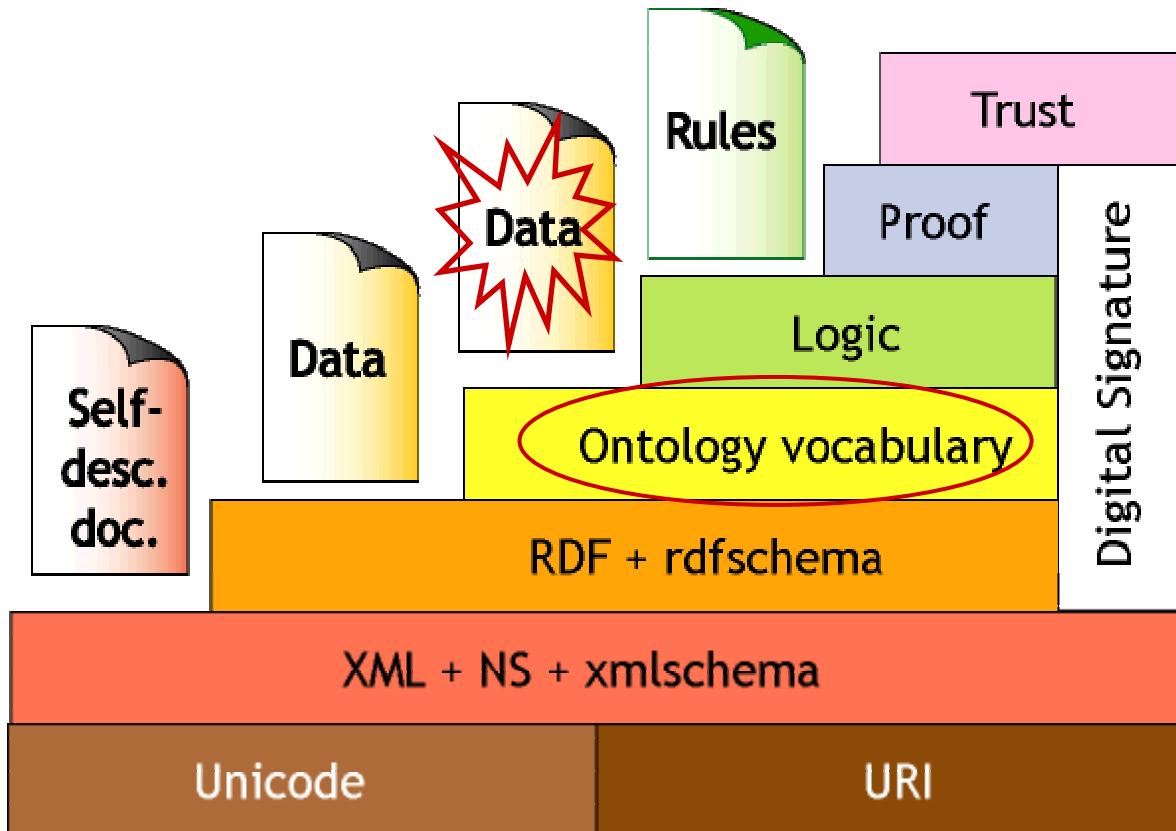
T. Berners-Lee, J. Hendler, and O. Lassila (2001). *The Semantic Web*.
Scientific American, May 2001, pp. 34–43.

- ⌘ Evolving extension of the World Wide Web (WWW) in which WWW content can be expressed not only in natural language, but also in a format that can be read and used by software agents, thus permitting them to find, share and integrate information more easily.
- ⌘ Vision of the WWW as a universal medium for data, information, and knowledge exchange.

The Semantic Web: layered architecture



The Semantic Web: layer of ontologies



What is an ontology?

T. R. Gruber (1993). *A translation approach to portable ontologies*. Knowledge Acquisition, 5(2): 199-220.

An Ontology is a
formal specification
of a shared
conceptualization
of a domain of interest

- ⇒ Executable
- ⇒ Group of persons
- ⇒ About concepts
- ⇒ Between application
and „unique truth“

OWL (Ontology Web Language)

- ⌘ **W3C recommendation** (i.e., a standard) for Web ontologies

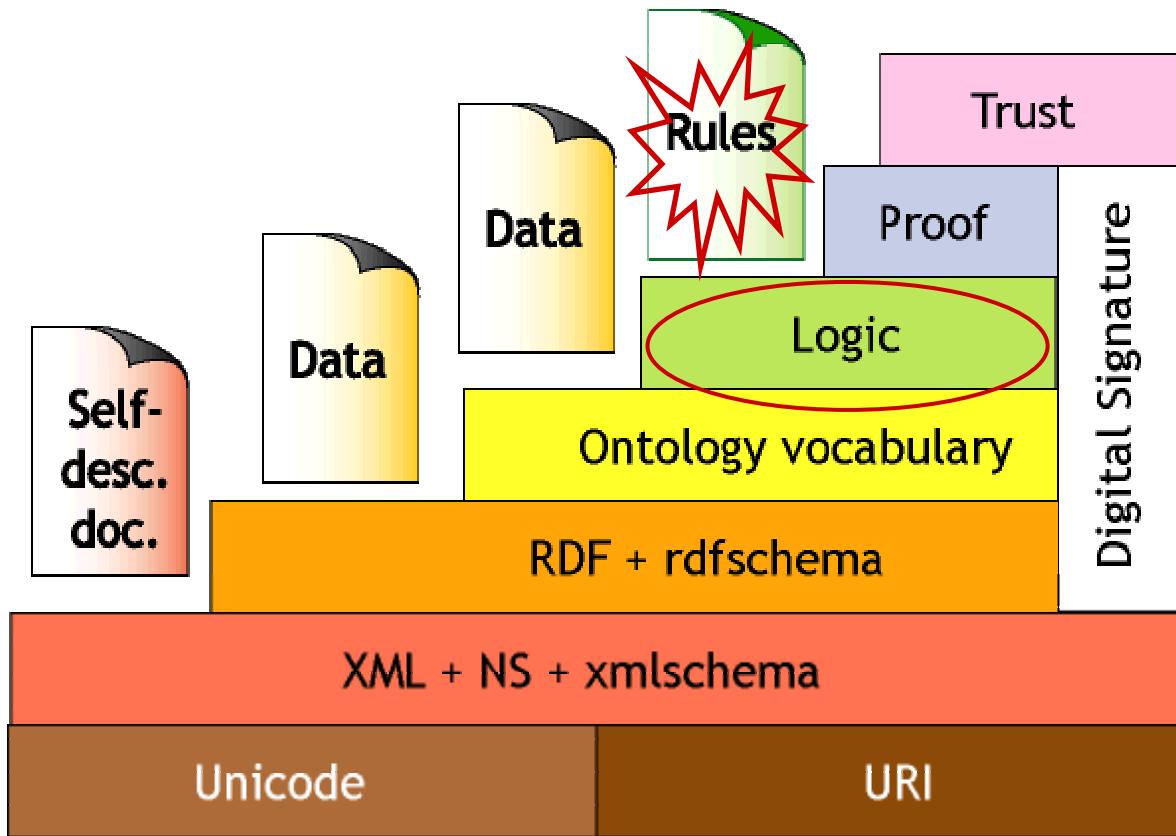
↙ <http://www.w3.org/2004/OWL/>

- ⌘ Developed by the **W3C WebOnt Working Group**

- ⌘ Mark-up language

- ↙ compatible with RDF/XML exchange format
 - ↙ based on earlier languages OIL and DAML+OIL

The Semantic Web: Rules on top of ontologies



SWRL (Semantic Web Rule Language)

- ⌘ Submitted to **W3C** for standardization
 - ↗ <http://www.w3.org/Submission/SWRL/>
- ⌘ Mark-up language
 - ↗ compatible with RDF/XML exchange format
 - ↗ integration of OWL and RuleML
- ⌘ **W3C RIF (Rule Interchange Format) Working Group**

What the Semantic Web can do for ML/DM

1. Lots and lots of tools to describe and exchange data for later use by ML/DM methods in a canonical way!
2. Using ontological structures to improve the ML/DM tasks
3. Provide background knowledge to guide ML/DM systems
 - ☒ See PriCKLws@ECML/PKDD-07

What ML/DM can do for the Semantic Web

1. Learning Ontologies (even if not fully automatic)
2. Learning to map between ontologies
3. Deep Annotation: Reconciling databases and ontologies
4. Annotation by Information Extraction
5. Duplicate recognition

Tutorial focus

- ⌘ The acquisition of ontologies and rules for the Semantic Web is a very demanding task
- ⌘ The logical nature of ontology and rule languages for the Semantic Web should not be neglected when choosing ML/DM methods to be applied
- ⌘ Inductive Logic Programming can be a source of solutions to the Knowledge Acquisition bottleneck of the Semantic Web

Tutorial overview

⌘ **Part I:** “Logical Foundations of Ontology and Rule Languages for the Semantic Web” (1h 30m)

⌘ **Part II:** “Logic-based ML/DM methods for the Semantic Web” (1h 30m)

The Challenges of the Semantic Web to Machine Learning and Data Mining

**Part I: “Logical Foundations
of Ontology and Rule
Languages for the
Semantic Web” (1h 30m)**

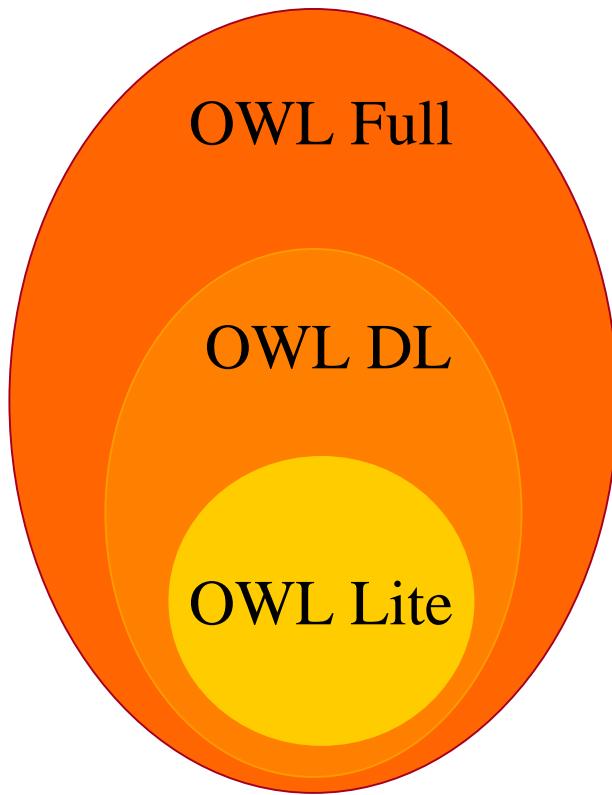
Part I: Overview

- ⌘ KR systems based on Description Logics
- ⌘ KR systems combining Description Logics and Horn Clausal Logic (fragments)

Part I: Overview

- ⌘ KR systems based on *Description Logics*
- ⌘ KR systems combining Description Logics and Horn Clausal Logic (fragments)

OWL



- ⌘ OWL provide three levels of expressive power
- ⌘ All three correspond to fragments of First Order Logic but
- ⌘ OWL DL is based on a family of fragments with desirable computational properties: **Description Logics!**

OWL DL

⌘ Why Description Logics?

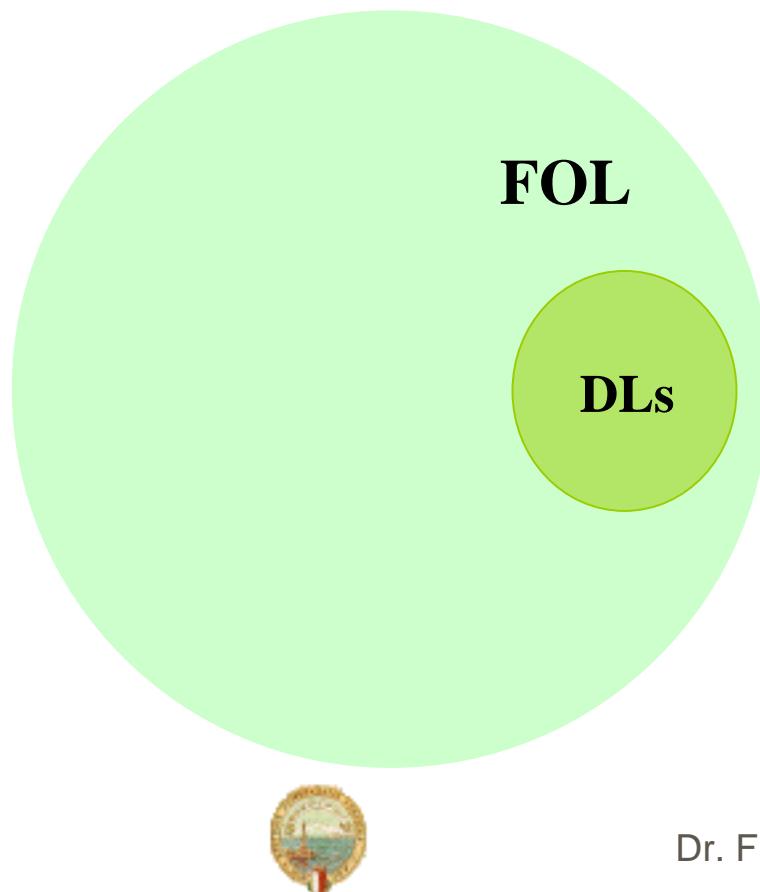
⌘ It exploits results of 15+ years of KR&R research

- ⌘ Well defined (model theoretic) **semantics**
- ⌘ **Formal properties** well understood (complexity, decidability)
- ⌘ Known **reasoning** algorithms
- ⌘ Implemented systems (highly optimised)



What are Description Logics?

F. Baader et al. (2003). *The Description Logic Handbook: Theory, Implementation, Applications*. Cambridge University Press, Cambridge, UK.



- ⌘ DLs are decidable variable-free fragments of First Order Logic (FOL)
 - ▣ Describe domain in terms of **concepts** (classes), **roles** (properties, relationships) and **individuals**
- ⌘ DLs provide a family of logic based formalisms for Knowledge Representation and Reasoning (KR&R)
 - ▣ Descendants of **semantic networks** and **KL-ONE**

DL Basics

⌘ **Concepts** (unary predicates/formulae with one free variable)

↳ E.g., Person, Doctor, HappyParent, (Doctor \sqcup Lawyer)

⌘ **Roles** (binary predicates/formulae with two free variables)

↳ E.g., hasChild, loves, (hasBrother \circ hasDaughter)

⌘ **Individuals** (constants)

↳ E.g., John, Mary, Italy

⌘ **Operators** (for forming complex concepts and roles from atomic ones) restricted so that:

↳ Satisfiability/subsumption is decidable and, *if possible*, of low complexity

↳ No need for explicit use of variables

 ↳ Restricted form of \exists and \forall

 ↳ Features such as counting can be succinctly expressed

The DL Family

- ⌘ Smallest propositionally closed DL is ***ALC*** (Schmidt-Schauss and Smolka, 1991)
- ⌘ ***S*** often used for ***ALC*** extended with transitive roles (R_+)
- ⌘ Additional letters indicate other extensions, e.g.:
 - ─ ***H*** for role hierarchy (e.g., $\text{hasDaughter} \sqsubseteq \text{hasChild}$)
 - ─ ***O*** for nominals/singleton classes (e.g., {Italy})
 - ─ ***I*** for inverse roles (e.g., $\text{isChildOf} \equiv \text{hasChild}^{-}$)
 - ─ ***N*** for number restrictions (e.g., $\geq 2 \text{hasChild}$, $\leq 3 \text{hasChild}$)
 - ─ ***Q*** for qualified number restrictions (e.g., $\geq 2 \text{hasChild}.\text{Doctor}$)
 - ─ ***F*** for functional number restrictions (e.g., $\leq 1 \text{hasMother}$)
- ⌘ ***S*** + role hierarchy (***H***) + inverse (***I***) + QNR (***Q***) = ***SHIQ***
- ⌘ ***SHIQ*** is the basis for **OWL**
 - ─ OWL DL \approx ***SHIQ*** extended with nominals (i.e., ***SHOIQ***)
 - ─ OWL Lite \approx ***SHIQ*** with only functional restrictions (i.e., ***SHIF***)

\mathcal{ALC} syntax

<i>atomic concept</i>	A	Human
<i>atomic role</i>	R	likes
<i>conjunction</i>	C \sqcap D	Human \sqcap Male
<i>disjunction</i>	C \sqcup D	Nice \sqcup Rich
<i>negation</i>	\neg C	\neg Meat
<i>existential restriction</i>	\exists R.C	\exists hasChild.Human
<i>value restriction</i>	\forall R.C	\forall hasChild.Nice

- ⌘ E.g., person all of whose children are either Doctors or have a child who is a Doctor:

Person \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)

DL Semantics

Semantics given by standard FOL model theory:

Interpretation function \mathcal{I} Interpretation domain $\Delta^{\mathcal{I}}$

Individuals $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

John

Mary

Concepts $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

Lawyer

Doctor

Vehicle

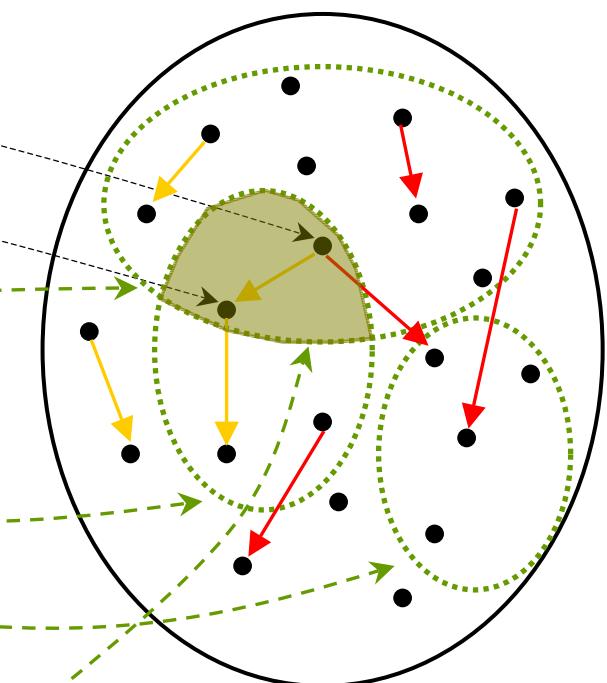
Roles $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

hasChild

owns

(Lawyer \sqcap Doctor)

Dr. Francesca A. Lisi



DL Semantics: Unique Names Assumption (UNA)

R. Reiter (1980). A logic for default reasoning.
Artificial Intelligence, 13:81-132.

❖ $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ if $a \neq b$

\mathcal{ALC} semantics

<i>atomic concept</i>	A	$A^I \subseteq \Delta^I$
<i>atomic role</i>	R	$R^I \subseteq \Delta^I \times \Delta^I$
<i>conjunction</i>	$C \sqcap D$	$C^I \cap D^I$
<i>disjunction</i>	$C \sqcup D$	$C^I \cup D^I$
<i>negation</i>	$\neg C$	$\Delta^I \setminus C^I$
<i>existential restriction</i>	$\exists R.C$	$\{x \mid \exists y. \langle x, y \rangle \in R^I \wedge y \in C^I\}$
<i>value restriction</i>	$\forall R.C$	$\{x \mid \forall y. \langle x, y \rangle \in R^I \Rightarrow y \in C^I\}$

DL Deduction Rules

Tableau calculus

- ⌘ Applies rules that correspond to DL constructors
 - ✉ E.g., $\text{John:}(\text{Person} \sqcap \text{Doctor}) \rightarrow_{\sqcap} \text{John:Person}$ and John:Doctor
- ⌘ Stops when no more rules applicable or **clash** occurs
 - ✉ Clash is an obvious contradiction, e.g., $A(x), \neg A(x)$
- ⌘ Some rules are **nondeterministic** (e.g., \sqcup , \exists)
 - ✉ In practice, this means **search**
- ⌘ Cycle check (**blocking**) often needed to ensure termination

\mathcal{ALC} Deduction Rules

An algorithm based on **tableau calculus** for \mathcal{ALC}

- # Tries to build a (tree) model \mathcal{I} for input concept C
- # Breaks down C syntactically, inferring constraints on elements in \mathcal{I}
- # Applies inference rules corresponding to \mathcal{ALC} constructors (e.g. \rightarrow_{\exists})
- # Works non-deterministically in PSpace
- # Stops when a clash, i.e. a contradiction, occurs (C is inconsistent) or no other rule can be applied (C is consistent)

Mapping DLs to FOL

⌘ Most DLs are decidable fragments of FOL

└ \mathcal{ALC} is a fragment of FOL with two variables (L2)

⌘ For mapping \mathcal{ALC} to FOL introduce:

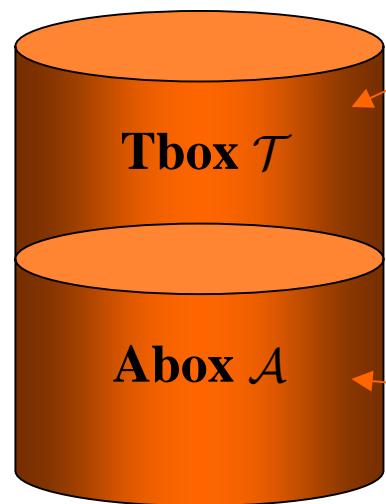
- └ a unary predicate A for a concept name A
- └ a binary relation R for a role name R

⌘ Translate complex concepts C, D as follows:

└ $t_x(A) = A(x)$	└ $t_y(A) = A(x)$
└ $t_x(C \sqcap D) = t_x(C) \wedge t_x(D)$	└ $t_y(C \sqcap D) = t_y(C) \wedge t_y(D)$
└ $t_x(C \sqcup D) = t_x(C) \vee t_x(D)$	└ $t_y(C \sqcup D) = t_y(C) \vee t_y(D)$
└ $t_x(\exists R.C) = \exists y.R(x,y) \wedge t_y(C)$	└ $t_y(\exists R.C) = \exists y.R(x,y) \wedge t_x(C)$
└ $t_x(\forall R.C) = \forall y.R(x,y) \Rightarrow t_y(C)$	└ $t_y(\forall R.C) = \forall y.R(x,y) \Rightarrow t_x(C)$

DL Knowledge Bases

Knowledge Base Σ



Terminological part

- Intensional* knowledge
- In the form of axioms

Assertional part

- Extensional* knowledge
- In the form of assertions

\mathcal{ALC} Knowledge Bases: syntax

Tbox

⌘ equality axioms

⊓ A≡C

⊓ Father ≡
Man ⊓ ⊨ hasChild. Human

⌘ inclusion axioms

⊓ C ⊑ D

⊓ ⊨ favourite. Brewery ⊑
⊓ ⊨ drinks. Beer

ABox

⌘ concept assertions

⊓ a:C

⊓ john:Father

⌘ role assertions

⊓ <a,b>:R

⊓ <john,bill>: has-child

Open World Assumption (OWA)

- ⌘ The information in an Abox is generally considered to be incomplete (*open world*)
- ⌘ An Abox represents possibly infinitely many interpretations, namely its models
- ⌘ Query answering requires nontrivial reasoning
- ⌘ Classical negation!

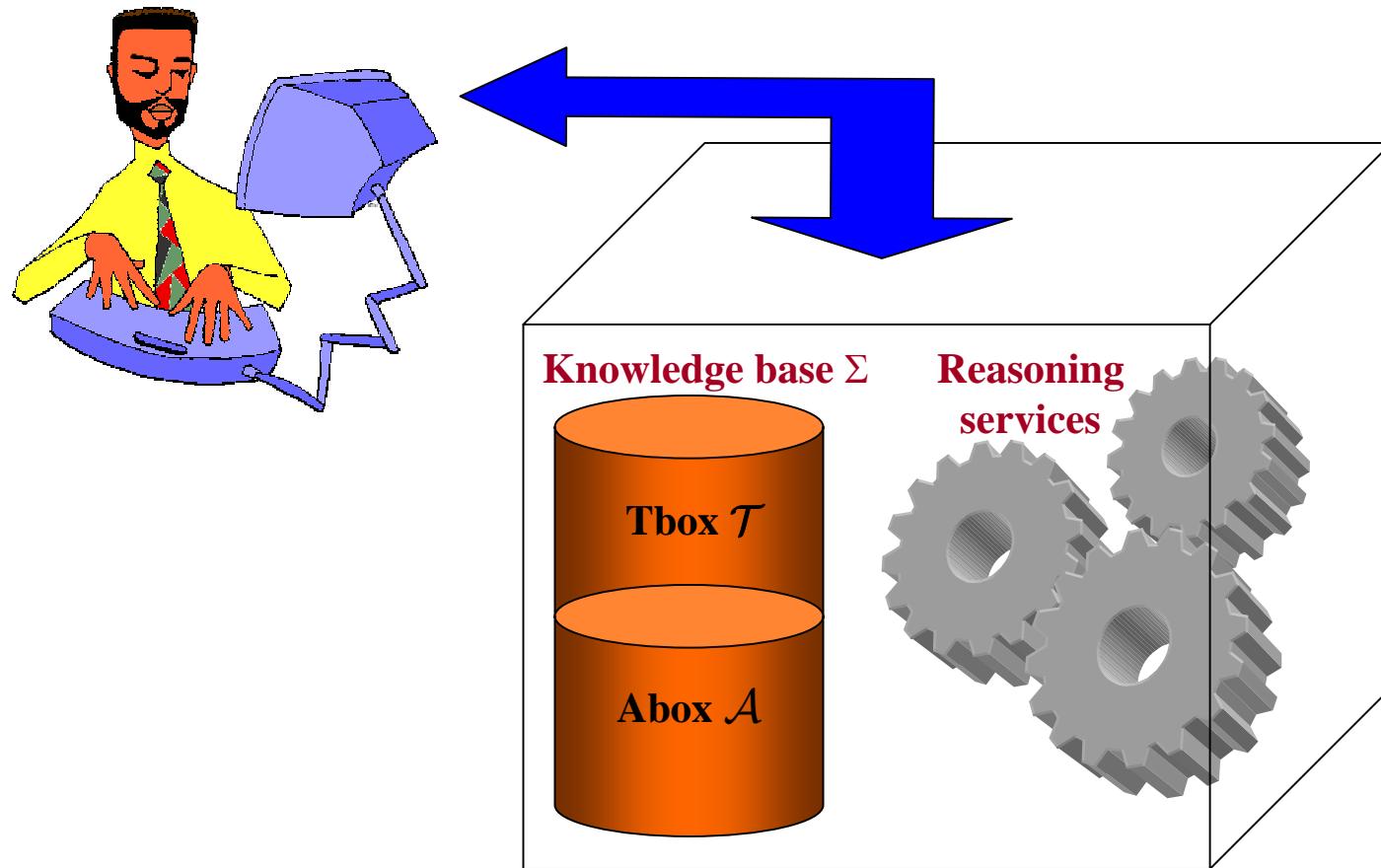
\mathcal{ALC} Knowledge Bases: semantics

An interpretation $\mathcal{I}_O = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies

- ⌘ an equality axiom $A \equiv C$ iff $A^{\mathcal{I}} \equiv C^{\mathcal{I}}$
- ⌘ an inclusion axiom $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- ⌘ a Tbox \mathcal{T} iff \mathcal{I} satisfies all axioms in \mathcal{T}

- ⌘ a concept assertion $a:C$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- ⌘ a role assertion $\langle a, b \rangle:R$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$
- ⌘ a ABox \mathcal{A} iff \mathcal{I} satisfies all assertions in \mathcal{A}

DL-based KR&R systems



DL-based KR&R systems: standard reasoning tasks

Subsumption

- # .. of concepts C and D ($C \sqsubseteq D$)
 - ↗ Is $C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} ?
- # .. of concepts C and D w.r.t. a TBox \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$)
 - ↗ Is $C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?

Consistency

- # .. of a concept C w.r.t. a TBox \mathcal{T}
 - ↗ Is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$?
- # .. of a ABox \mathcal{A}
 - ↗ Is there a model \mathcal{I} of \mathcal{A} ?
- # .. of a KB $(\mathcal{T}, \mathcal{A})$
 - ↗ Is there a model \mathcal{I} of both \mathcal{T} and \mathcal{A} ?

DL-based KR&R systems: standard reasoning tasks (2)

- ⌘ Subsumption and consistency are closely related
 - ✉ $C \sqsubseteq_{\mathcal{T}} D$ iff $C \sqcap \neg D$ is inconsistent w.r.t. \mathcal{T}
 - ✉ C is consistent w.r.t. \mathcal{T} iff not $C \sqsubseteq_{\mathcal{T}} A \sqcap \neg A$
- ⌘ Algorithms for checking consistency w.r.t TBoxes suffice
 - ✉ Based on tableau calculus
 - ✉ Decidability is important
 - ✉ Complexity between P and ExpTime

Instance check

- ⌘ .. of an individual a and a concept C w.r.t. a KB Σ
 - ✉ Is $a:C$ derivable from Σ ? Or equivalently,
 - ✉ Is $\Sigma \cup \{a:\neg C\}$ consistent?

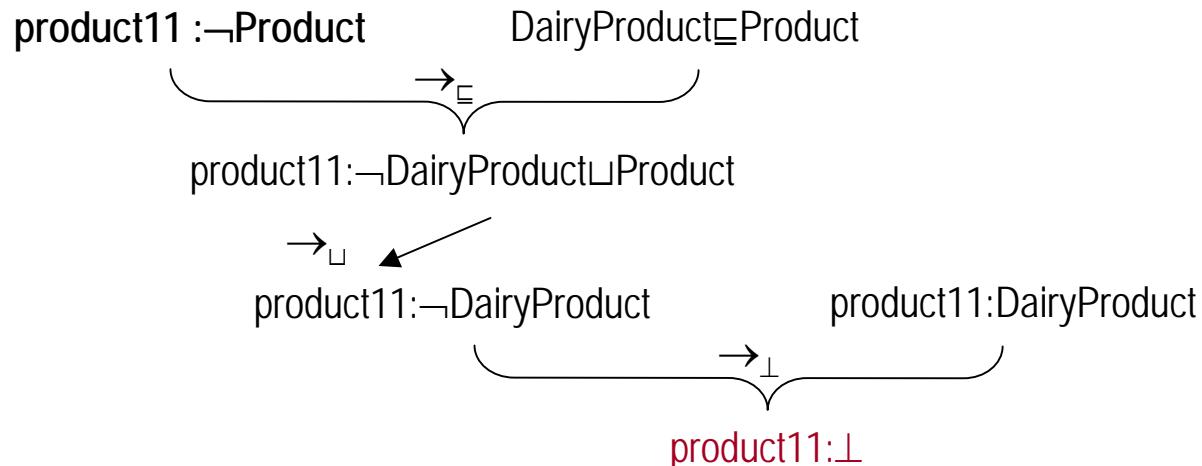
\mathcal{ALC} -based KR&R systems: example of instance check

⌘ $\Sigma = \text{DairyProduct} \sqsubseteq \text{Product}$, $\text{product11} : \text{DairyProduct}$, etc.

↙ Is $\text{product11} : \text{Product}$ derivable from Σ ?

Or equivalently

↙ Is $\Sigma \cup \{ \text{product11} : \neg \text{Product} \}$ consistent?



DL-based KR&R systems: non-standard reasoning tasks

Most Specific Concept (MSC)

Nebel, B. (1990). *Reasoning and Revision in Hybrid Representation Systems*. New York: Springer.

- # Intuitively, the MSC of individuals in an ABox is a concept description that represents all the properties of the individuals including the concept assertions they occur in and their relationship to other individuals
- # The existence of MSC is not guaranteed for all DLs
 - ↗ Approximation of MSC is possible!
- # However, if the MSC exists, it is uniquely determined up to equivalence

DL-based KR&R systems: non-standard reasoning tasks (2)

Least Common Subsumer (LCS)

W.W. Cohen, A. Borgida, & H. Hirsh (1992). *Computing Least Common Subsumers in Description Logics*. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92), pages 754-760. AAAI Press/MIT Press.

- # The LCS of a given sequence of concept descriptions is
 - ▣ *Intuitively*, a concept description that represents the properties that all the elements of the sequence have in common
 - ▣ *More formally*, the MSC description that subsumes the given concept descriptions
- # The existence of the LCS for a given sequence of concept descriptions is not guaranteed but ..
- # .. if an LCS exists, then it is uniquely determined up to equivalence

Back to OWL DL:

DL syntax

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \dots \sqcap C_n$	Human \sqcap Male	$C_1(x) \wedge \dots \wedge C_n(x)$
unionOf	$C_1 \sqcup \dots \sqcup C_n$	Doctor \sqcup Lawyer	$C_1(x) \vee \dots \vee C_n(x)$
complementOf	$\neg C$	\neg Male	$\neg C(x)$
oneOf	$\{x_1\} \sqcup \dots \sqcup \{x_n\}$	{john} \sqcup {mary}	$x = x_1 \vee \dots \vee x = x_n$
allValuesFrom	$\forall P.C$	\forall hasChild.Doctor	$\forall y.P(x, y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	\exists hasChild.Lawyer	$\exists y.P(x, y) \wedge C(y)$
maxCardinality	$\leq n P$	≤ 1 hasChild	$\exists^{\leq n} y.P(x, y)$
minCardinality	$\geq n P$	≥ 2 hasChild	$\exists^{\geq n} y.P(x, y)$

- ⌘ C is a concept (class); P is a role (property); x is an individual name
- ⌘ XMLS **datatypes** as well as classes in $\forall P.C$ and $\exists P.C$

Restricted form of DL **concrete domains**

Dr. Francesca A. List

Back to OWL DL: DL syntax (2)

OWL Syntax	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	Man \equiv Human \sqcap Male
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter \sqsubseteq hasChild
equivalentProperty	$P_1 \equiv P_2$	cost \equiv price
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+$ \sqsubseteq ancestor

OWL Syntax	DL Syntax	Example
type	$a : C$	John : Happy-Father
property	$\langle a, b \rangle : R$	$\langle \text{John}, \text{Mary} \rangle : \text{has-child}$

/owl ontology equivalent to DL KB (Tbox + Abox)

Back to OWL DL: an example

- ⌘ Dairy products are products

```
<owl:Class rdf:ID="DairyProduct">
  <rdfs:subClassOf rdf:about="#Product" />
  </rdfs:subClassOf>
</owl:Class>
```

- ⌘ European customers are customers living in European countries

```
<owl:Class rdf:ID="EuropeanCustomer">
  <owl:equivalentClass/>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Customer" />
    <owl:restriction/>
      <owl:onProperty rdf:Resource="#livesIn" />
      <owl:allValuesFrom rdf:resource="#EuropeanCountry" />
    </owl:allValuesFrom>
  </owl:restriction>
  </owl:intersectionOf>
</owl:equivalentClass>
</owl:Class>
```

Description Logics: Bibliography (only the essential)

- ⌘ F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (2003). *The Description Logic Handbook: Theory, Implementation, Applications*. Cambridge University Press, Cambridge, UK.
- ⌘ R. Kusters (2001). *Non-Standard Inferences in Description Logics*. Volume 2100 of Lecture Notes in Artificial Intelligence. Springer-Verlag.
- ⌘ M. Schmidt-Schauß & G. Smolka (1991). *Attributive concept descriptions with complements*. Artificial Intelligence, 48 (1): 1-26.
- ⌘ On-line material: <http://dl.kr.org/courses.html>
- ⌘ C. Peltason (1991). The BACK system—an overview. *SIGART Bull.* 2, 3 (Jun. 1991), 114-119.
- ⌘ CLASSIC: <http://www.bell-labs.com/project/classic/>

Part I: Overview

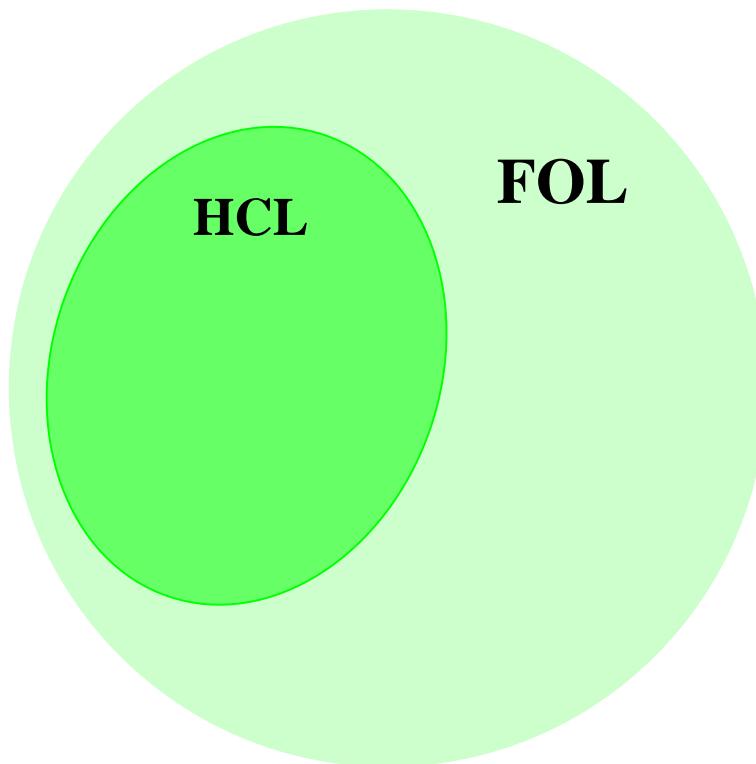
- ⌘ KR systems based on Description Logics
- ⌘ *KR systems combining Description Logics and Horn Clausal Logic (fragments)*

RuleML (Rule Markup Language)

- ⌘ Developed to express both forward (bottom-up) and backward (top-down) rules in XML for deduction, rewriting, and further inferential-transformational tasks.
- ⌘ **Based on Datalog** (function-free fragment of Horn Clausal Logic)
- ⌘ Defined by the Rule Markup Initiative (an open network of individuals and groups from both industry and academia)

✉ <http://www.ruleml.org/>

What is Horn Clausal Logic?



- ⌘ Horn clausal logic (HCL) is the FOL fragment that contains universally quantified disjunctions of literals with at most one positive literal
- ⌘ It is at the basis of Logic Programming and Deductive Databases

HCL syntax

- ⌘ **Clausal language \mathcal{L}** = the set of constant, variable, functor and predicate symbols
- ⌘ **Term**: Constant / Variable / Function applied to a term
- ⌘ **Atom**: Predicate applied to n terms
- ⌘ **Literal**: (negated) atom
- ⌘ **Horn Clause** allows the two following equivalent notations
 - ☒ $\forall X \forall Y (p(X, Y) \leftarrow q(X, a) \leftarrow r(Y, f(a)))$
 - ☒ $p(X, Y) \leftarrow q(X, a), r(Y, f(a))$
- ⌘ **Definite clause (rule)**: only one literal in the head
- ⌘ **Unit clause (fact)**: rule without head

HCL Semantics

Herbrand model theory

- ⌘ **Herbrand universe** U_H = the set of all ground terms that can be formed out from the constants and function symbols in \mathcal{L}
- ⌘ **Herbrand base** B_H = the set of all ground atoms that can be formed out from terms in U_H and predicates in \mathcal{L}
- ⌘ **Herbrand interpretation** I_H = subset of B_H containing all atoms that are true in I_H

HCL Deduction Rules

SLD-resolution

2 opposite literals (up to a substitution) : $l_i\theta_1 = \neg k_j\theta_2$

$$l_1 \vee \dots \vee l_i \vee \dots \vee l_n \quad k_1 \vee \dots \vee k_j \vee \dots \vee k_m$$

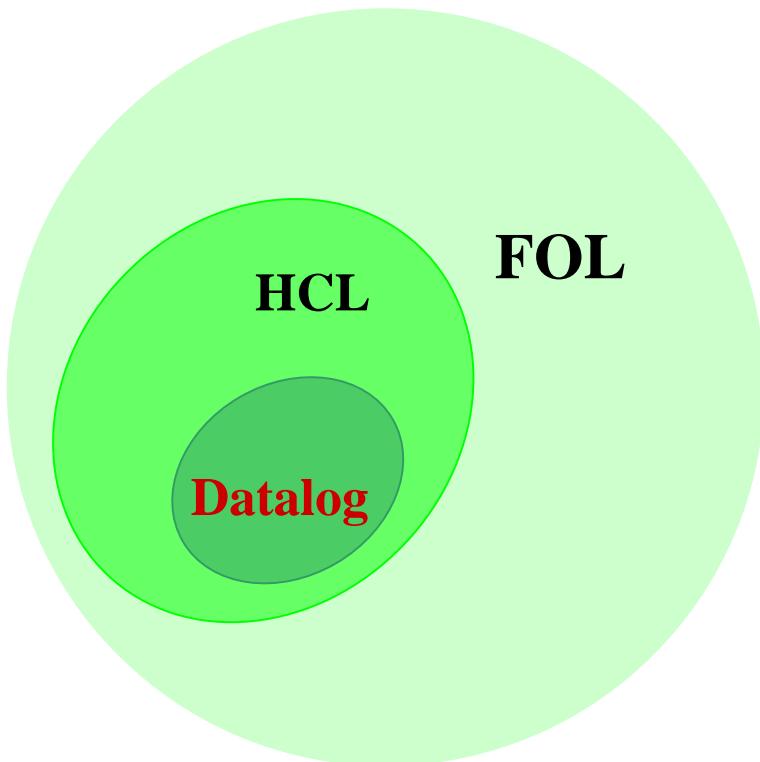
$$(l_1 \vee l_2 \vee \dots \vee l_{i-1} \vee l_{i+1} \vee \dots \vee l_n \vee k_1 \vee k_{j-1} \vee k_{j+1} \dots \vee k_m) \theta_1 \theta_2$$

e.g., $p(X) :- q(X)$ and $q(X) :- r(X, Y)$ yield $p(X) :- r(X, Y)$
 $p(X) :- q(X)$ and $q(a)$ yield $p(a)$.

⌘ complete by refutation!

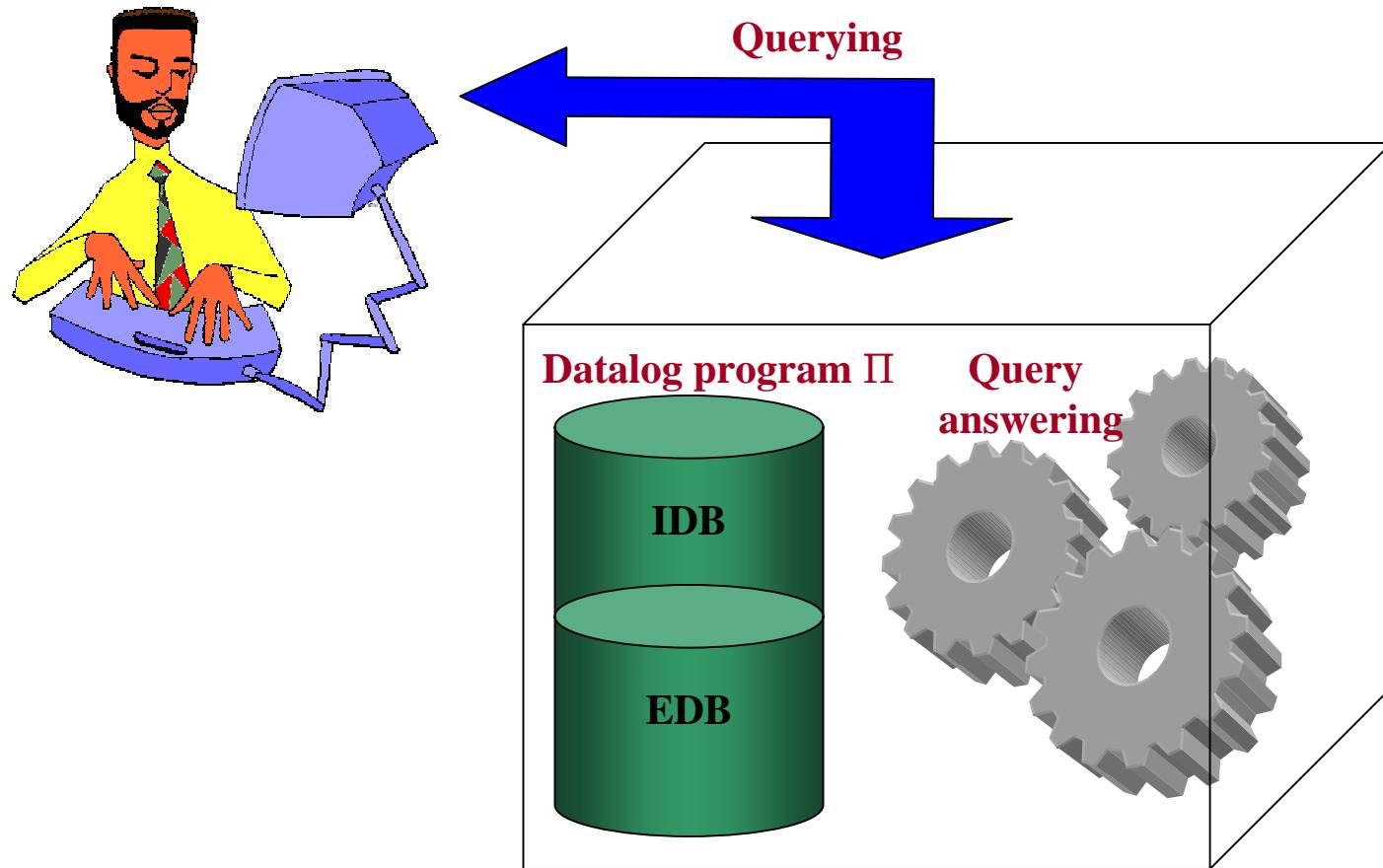
Datalog

S. Ceri, G. Gottlob, & L. Tanca (1990). *Logic Programming and Databases*. Springer.



- ⌘ It is a function-free fragment of HCL (more precisely of definite clauses)
- ⌘ It is used as logical language for relational databases
- ⌘ Query answering by SLD-refutation

Deductive databases



Closed World Assumption (CWA)

- ⌘ The information in a database is generally considered to be complete (*closed world*)
- ⌘ A database instance represents exactly one interpretation, namely the one where classes and relations in the schema are interpreted by the objects and the tuples in the instance
- ⌘ Negation As Failure: what is unknown is false

Datalog: example of query answering

⌘ $\Pi = \text{item}(\text{OrderID}, \text{ProductID}) \leftarrow \text{orderDetail}(\text{OrderID}, \text{ProductID}, _, _, _)$
 $\text{orderDetail}(\text{order10248}, \text{product11}, \text{'£14'}, 12, 0.00)$

Etc.

- ─ Is $\text{item}(\text{order10248}, \text{product11})$ derivable from Π ?
- ─ Is $\Pi \cup \{\neg \text{item}(\text{order10248}, \text{product11})\}$ consistent?

$\leftarrow \text{item}(\text{order10248}, \text{product11}) \quad \text{item}(\text{OrderID}, \text{ProductID}) \leftarrow \text{orderDetail}(\text{OrderID}, \text{ProductID}, _, _, _)$

$\{ \text{OrderID}/\text{order10248}, \text{ProductID}/\text{product11} \}$

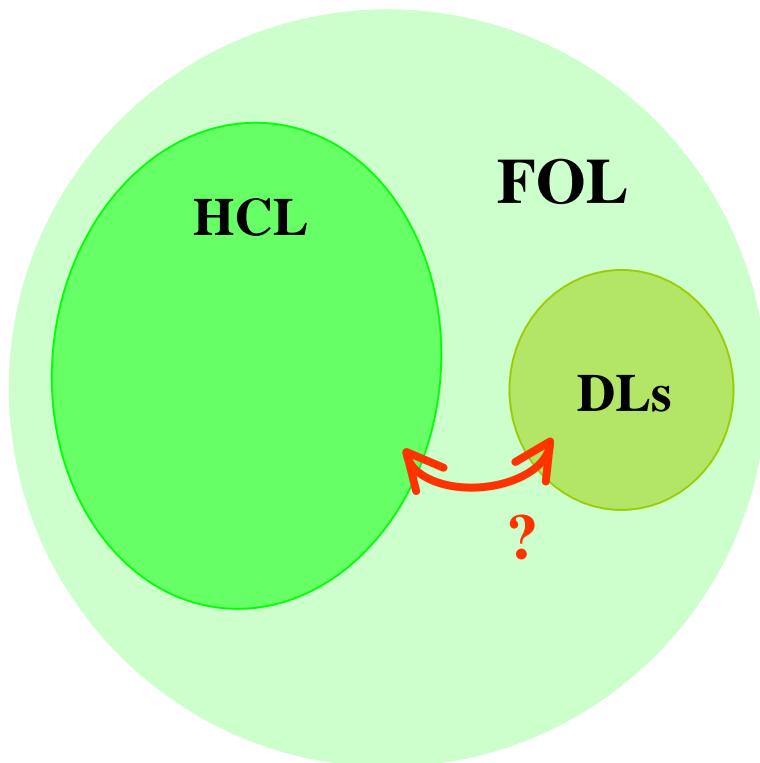
$\leftarrow \text{orderDetail}(\text{order10248}, \text{product11}, _, _, _) \quad \text{orderDetail}(\text{order10248}, \text{product11}, \text{'£14'}, 12, 0.00)$

$\{ \}$

←

DLS and HCL

A. Borgida (1996). On the relative expressiveness of Description Logics and Predicate Logics. *Artificial Intelligence*, 82: 353-367.

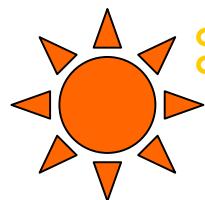


- ⌘ HCL and DLS can not be compared wrt expressive power
 - ◻ No relations of arbitrary arity or arbitrary joins between relations in DLS
 - ◻ No exist. quant. in HCL
- ⌘ Can they be combined?

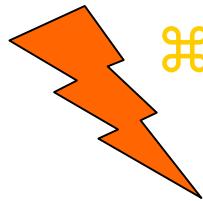
Hybrid DL-HCL KR&R Systems

Levy & M.-C. Rousset (1998). Combining Horn rules and Description Logics in CARIN. *Artificial Intelligence*, 104: 165-209.

F. Donini et al. (1998). \mathcal{AL} -log: Integrating Datalog and Description Logics. *J. of Intelligent Systems*, 10(3):227-252.

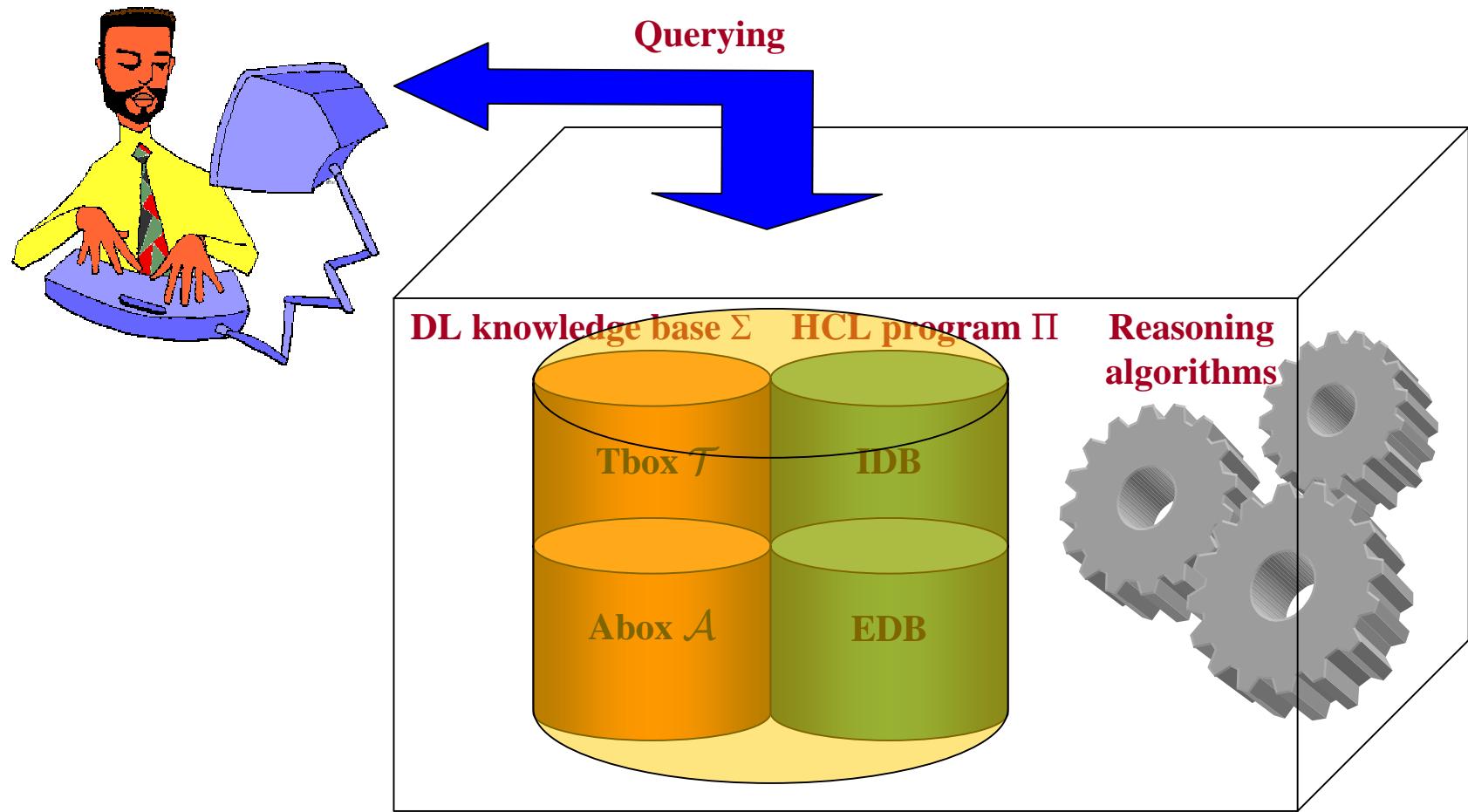


- ⌘ It allows more expressive and deductive power
 - ↪ CARIN is a family of powerful hybrid languages
 - ↪ \mathcal{AL} -log is less powerful than CARIN

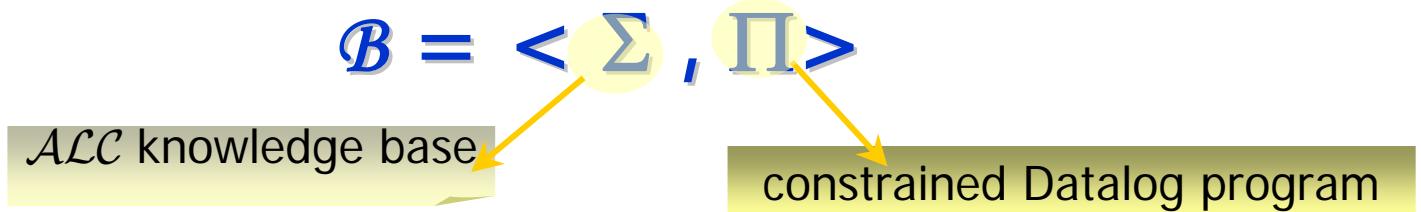


- ⌘ It can easily lead to undecidability if unrestricted
 - ↪ Some CARIN languages are decidable
 - ↪ \mathcal{AL} -log is decidable

Hybrid DL-HCL KR&R systems



\mathcal{AL} -log syntax



constrained Datalog clauses

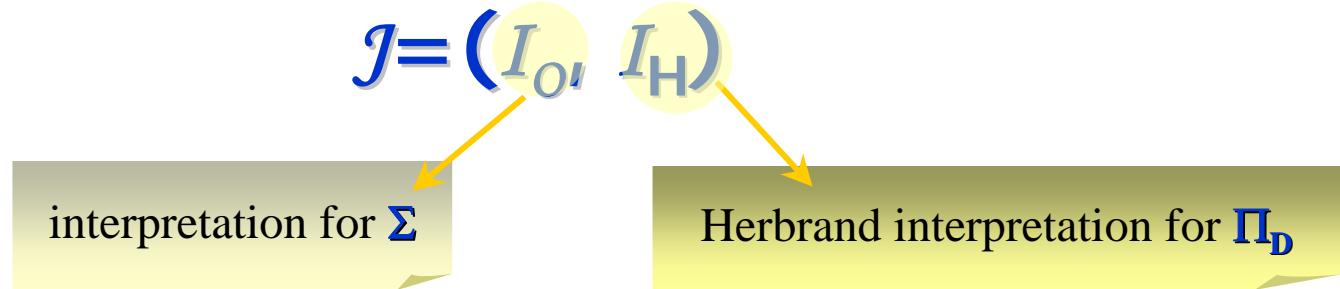
$\alpha_0 \leftarrow \alpha_1, \dots, \alpha_m \ \& \ \gamma_1, \dots, \gamma_n$
where α_i are Datalog literals and γ_j are constraints (\mathcal{ALC} concepts from Σ used as "typing constraints" for variables)

⌘ item(OrderID, ProductID) \leftarrow orderDetail(OrderID, ProductID, _, _, _)
& OrderID:Order, ProductID:Product

⌘ Safeness conditions:

- ─ Only positive Datalog literals in the body
- ─ Only one Datalog literal in the head
- ─ Constraints must refer to variables occurring in the Datalog part
- ─ Variables in the Datalog part can be constrained

\mathcal{AL} -log semantics



- # J satisfies \mathcal{B} iff
 - ↗ it satisfies Σ , and
 - ↗ for each clause $\alpha_0 \leftarrow \alpha_1, \dots, \alpha_m \ \& \ \gamma_1, \dots, \gamma_n$, for each of its ground instances $\alpha'_0 \leftarrow \alpha'_1, \dots, \alpha'_m \ \& \ \gamma'_1, \dots, \gamma'_n$, either there exists one γ'_i , $1 \leq i \leq n$, that is not satisfied by J or $\alpha'_0 \leftarrow \alpha'_1, \dots, \alpha'_m$ is satisfied by J
- # OWA of \mathcal{ALC} and CWA of Datalog do not interfere (safeness)
- # UNA holds for \mathcal{ALC} and *ground* Datalog

\mathcal{AL} -log reasoning

Query answering

- ⌘ Atomic queries (only Datalog)
- ⌘ Constrained SLD-resolution = SLD-resolution (Datalog part) + tableau calculus (\mathcal{ALC} part)
 - ▣ decidable
 - ▣ Sound and complete by refutation
- ⌘ Queries are answered by constrained SLD-refutation
 - ▣ For each ground instance Q' of the query Q ,
 - ▣ collect the set of all constrained SLD-derivations d_1, d_2, \dots, d_m of bounded length (with $d_i = Q'_0 \dots Q'_{n_i}$) for Q' in Σ
 - ▣ Then check whether $\Sigma \models \text{disj}(Q'_{n_1}, \dots, Q'_{n_m})$

\mathcal{AL} -log reasoning: example of query answering

$\leftarrow \text{item}(\text{order10248}, \text{product11})$

item(OrderID, ProductID) $\leftarrow \text{orderDetail}(\text{OrderID}, \text{ProductID}, _, _, _)$
& OrderID:Order, ProductID:Product

{OrderID/order10248, ProductID/product11}

$\leftarrow \text{orderDetail}(\text{order10248}, \text{Y}, _, _, _)$

& order10248:Order, Y:Product

orderDetail(order10248, product11, '£14', 12, 0.00)

{Y/product11}

$\leftarrow \& \text{order10248:Order, product11:Product}$

Assuming that this is the only SLD-derivation for the query,
the existential entailment problem boils down to prove that

$\Sigma \cup \{ \text{order10248:}\neg\text{Order, product11:}\neg\text{Product} \}$
is unsatisfiable!

CARIN syntax and semantics

- ⌘ Σ is based on any DL (but good results for \mathcal{ALCNR})
- ⌘ Π contain Horn rules, i.e. definite clauses, where DL literals:
 - ◻ can be built from either concept or role predicates
 - ◻ are allowed in rule heads
- ⌘ The semantics naturally follows as in \mathcal{AL} -log

CARIN reasoning

Query answering

- ⌘ Atomic queries (built from either concept, role or ordinary predicates)
- ⌘ Constrained SLD-resolution = SLD-resolution (HCL part)
+ tableau calculus (DL part)
 - ▣ complete by refutation for non-recursive CARIN- \mathcal{ALCNR}
 - ▣ Decidable for the non-recursive case
 - ▣ Undecidable for the recursive case, unless weaken the DL part or impose rules to be role-safe

Back to SWRL

- ❖ SWRL is undecidable!
- ❖ Several decidable alternatives to SWRL recently proposed:
 - ❖ DL-safe rules (Motik et al., 2005)
 - ❖ r-hybrid KBs (Rosati, 2005)
 - ❖ $\mathcal{DL} + \log$ (Rosati, 2006)
 - ❖ hybrid MKNF KBs (Motik & Rosati, 2007)

Back to SWRL: an example

```
<ruleml:imp>
  <ruleml:_body>
    <swrlx:classAtom>
      <owlx:Class owlx:name="&Order" /> <ruleml:var> OrderID </ruleml:var>
    </swrlx:classAtom>
    <swrlx:classAtom>
      <owlx:Class owlx:name = "&Product" /> <ruleml:var> ProductID </ruleml:var>
    </swrlx:classAtom>
    <swrlx:individualPropertyAtom swrlx:property="&orderDetail">
      <ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>.. <ruleml:var> .. </ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml:_body>
  <ruleml:_head>
    <swrlx:individualPropertyAtom swrlx:property="&item">
      <ruleml:var> OrderID </ruleml:var> <ruleml:var> ProductID </ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml:_head>
</ruleml:imp>
```


Hybrid DL-HCL KR&R Systems: Bibliography

- ⌘ A. Borgida (1996). *On the relative expressiveness of Description Logics and Predicate Logics*. Artificial Intelligence, 82: 353-367.
- ⌘ F. Donini et al. (1998). *AL-log: Integrating Datalog and Description Logics*. J. of Intelligent Systems, 10(3):227-252.
- ⌘ T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits (2004). *Combining Answer Set Programming with Description Logics for the Semantic Web*. KR 2004: 141-151
- ⌘ T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, H. Tompits (2006). *Reasoning with Rules and Ontologies*. Reasoning Web 2006: 93-127
- ⌘ B.N. Grosof, I. Horrocks, R. Volz, S. Decker (2003). *Description logic programs: combining logic programs with description logic*. WWW 2003: 48-57.
- ⌘ I. Horrocks, P.F. Patel-Schneider (2004). *A proposal for an OWL rules language*. WWW 2004: 723-731.

Hybrid DL-HCL KR&R Systems: Bibliography (2)

- ⌘ I. Horrocks, P.F. Patel-Schneider, S. Bechhofer, D. Tsarkov (2005). *OWL rules: A proposal and prototype implementation*. J. Web Sem. 3(1): 23-40.
- ⌘ A. Levy & M.-C. Rousset (1998). *Combining Horn rules and Description Logics in CARIN*. Artificial Intelligence, 104: 165-209.
- ⌘ B. Motik, I. Horrocks, R. Rosati, & U. Sattler (2006). *Can OWL and Logic Programming Live Together Happily Ever After?* In I.F. Cruz et al. (eds), Proc. of the 5th Int. Semantic Web Conference (ISWC 2006), volume 4273 of LNCS, pages 501–514. Springer.
- ⌘ B. Motik & R. Rosati (2007). *A Faithful Integration of Description Logics with Logic Programming*. In Proc. of the 20th Int. Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 477–482.
- ⌘ B. Motik, U. Sattler & R. Studer (2004). *Query Answering for OWL-DL with Rules*. In S. A. McIlraith, D. Plexousakis, & F. van Harmelen (eds), Proc. of the 3rd Int. Semantic Web Conference, volume 3298 of LNCS, pp. 549–563. Springer.

Hybrid DL-HCL KR&R Systems: Bibliography (3)

- # R. Rosati (2005a). *On the decidability and complexity of integrating ontologies and rules*. J. Web Sem. 3(1): 61-73.
- # R. Rosati (2005b). *Semantic and Computational Advantages of the Safe Integration of Ontologies and Rules*. PPSWR 2005: 50-64
- # R. Rosati (2006). *DL+log: Tight Integration of Description Logics and Disjunctive Datalog*. KR 2006: 68-78

The Challenges of the Semantic Web to Machine Learning and Data Mining

**Part II: “Acquisition of
Ontologies and Rules for
the Semantic Web with
Inductive Logic
Programming” (1h 30m)**

Part II: Overview

⌘ Introduction to Inductive Logic Programming (ILP)

⌘ ILP and DL representations

⌘ ILP and hybrid DL-HCL representations

⌘ ILP and the Semantic Web: Research directions

Part II: Overview

⌘ *Introduction to ILP*

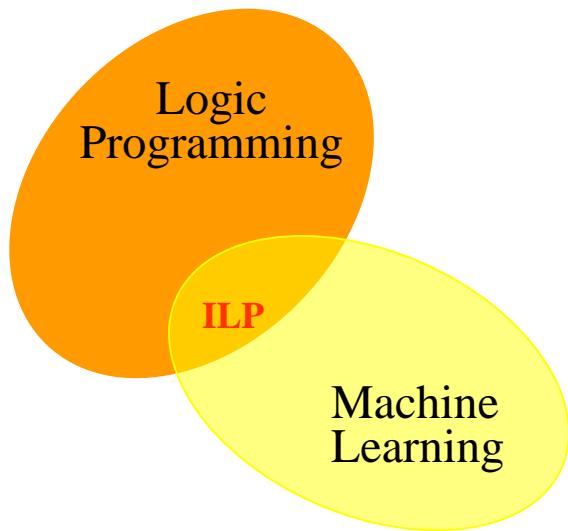
⌘ ILP and DL representations

⌘ ILP and hybrid DL-HCL representations

⌘ ILP and the Semantic Web: Research directions

Inductive Logic Programming

S.-H. Nienhuys-Cheng & R. de Wolf (1997). *Foundations of Inductive Logic Programming*. LNAI Tutorial Series, Springer.



- ⌘ *Originally* Induction of rules from examples and background knowledge within the HCL framework
 - ◻ Scope of induction: discrimination
 - ◻ Class of tasks: prediction

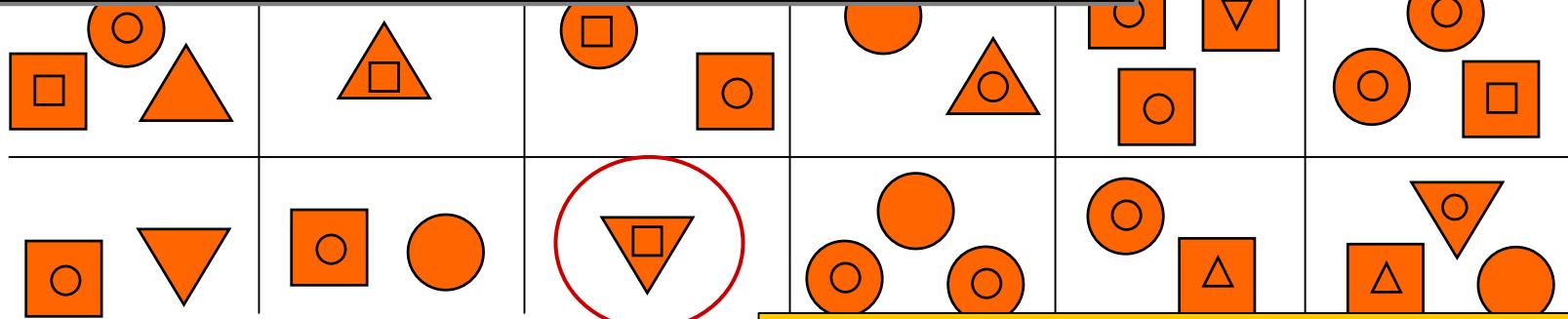
- ⌘ *Currently* Induction of rules from observations and background knowledge within the framework of FOL (fragments)
 - ◻ scope of induction: discrimination/characterization
 - ◻ task: prediction/description

ILP Example: "Bongard problems"

- ⌘ Simplified version of Bongard problems used as benchmarks in ILP
 - ◻ Bongard: a Russian scientist studying pattern recognition
 - ◻ Bongard problem: Given some pictures, find patterns in them
- ⌘ E.g. we want to find a set of hypotheses (clausal theory) that is complete and consistent with the following set of (positive and negative) examples
 - ◻ Complete=covers all positive examples
 - ◻ Consistent=covers no negative example

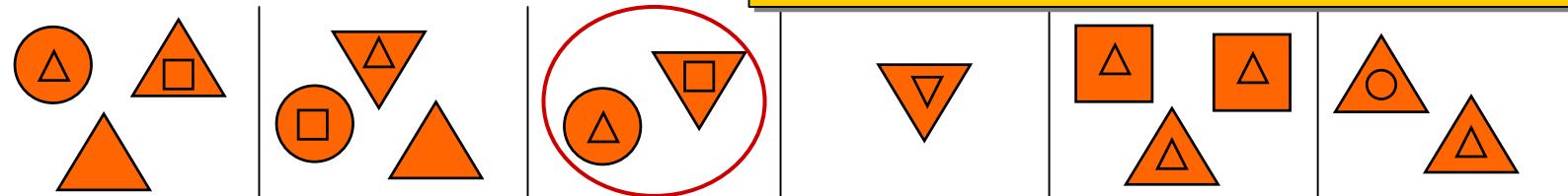
Negative examples

neg(ex1):- contains(ex1,o1),contains(o1,o2),triangle(o1),
points(o1,down),square(o2).



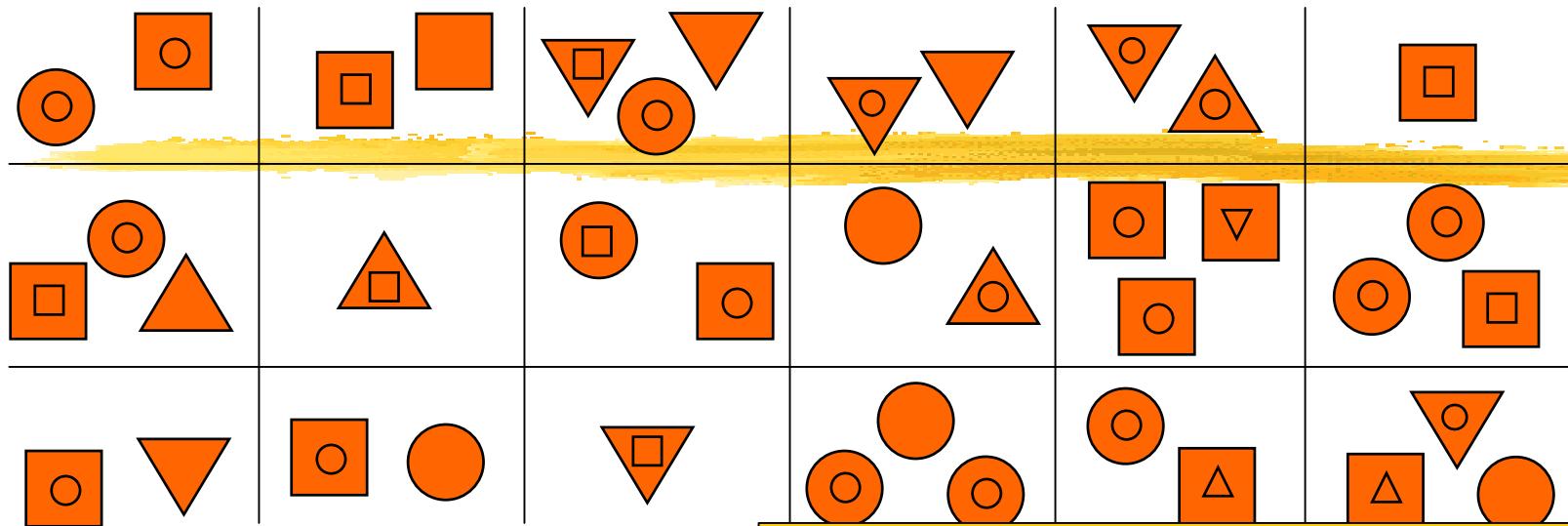
Positive examples

pos(X):- contains(X,o1),contains(o1,o2),
triangle(o1), points(o1,down),square(o2)?



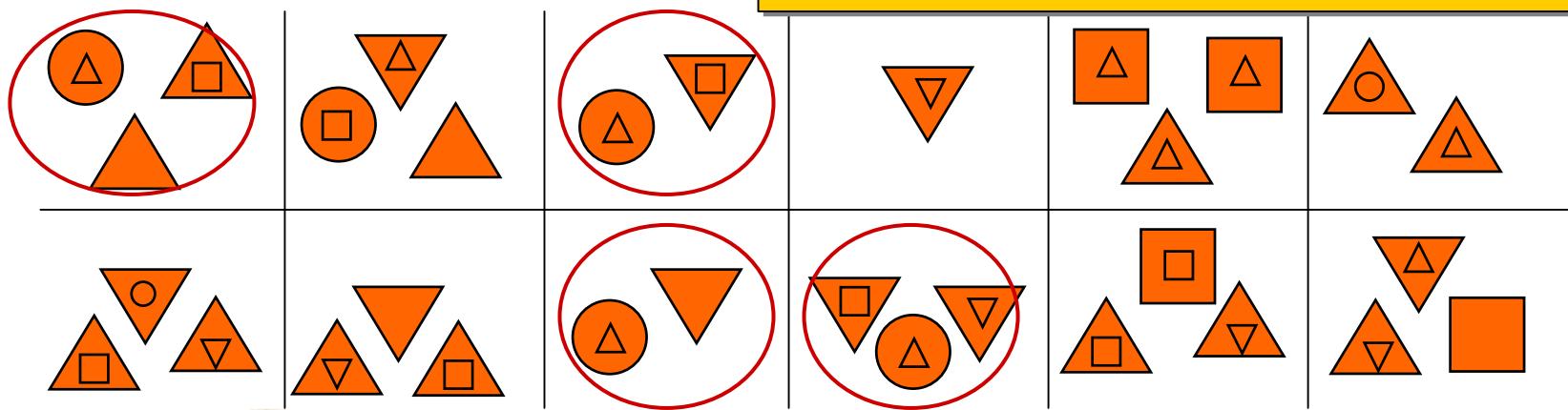
pos(ex2):- contains(ex2,o3),contains(o3,o4),triangle(o3),
points(o3,down),square(o4), contains(ex2,o5),
contains(o5,o6), circle(o5),triangle(o6), points(o6,up).

Negative examples



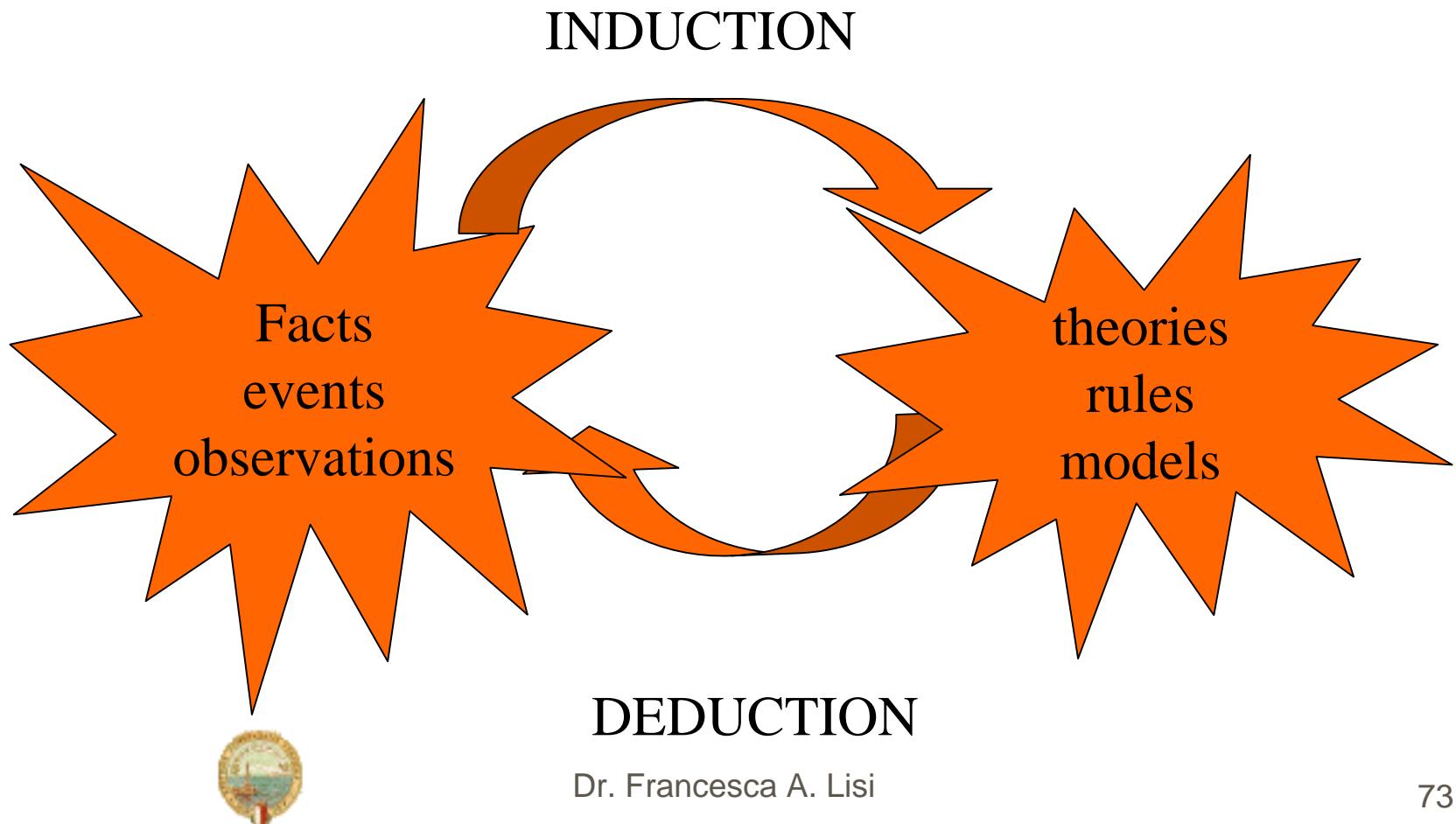
pos(X):- contains(X,O1),contains(O1,O2),
circle(O1),square(O2), points(O1,up)?

Positive examples



Induction in ILP

Induction as inverted deduction



Inverse resolution

S. Muggleton & W. Buntine (1988). *Machine invention of first-order predicates by inverting resolution*. Proc. of the 5th Int. Conf. On Machine Learning, pp. 339-352.

- ❖ Resolution implements \vdash for sets of clauses
- ❖ Inverting it allows to generalize a clausal theory
- ❖ Inverse resolution is much more difficult than resolution itself
 - ◻ different operators defined
 - ◻ no unique results

Inverse resolution (2)

⌘ Properties of inverse resolution:

- ▣ + in principle very powerful
- ▣ - gives rise to huge search space
- ▣ - result of inverse resolution not unique
 - ▣ e.g., `father(j,p):-male(j)` and `parent(j,p)` yields `father(j,p):-male(j),parent(j,p)` or `father(X,Y):-male(X),parent(X,Y)` or ...

⌘ Need for a ordered hypothesis space

Induction in ILP (2)

Induction as generalization

- ⌘ Exploits results obtained in Concept Learning (Mitchell, 1982)
 - ⌘ Generalization = search through a partially ordered space of hypotheses with the goal of finding the hypothesis that best fits the training examples
- ⌘ Provides a bunch of techniques for structuring, searching, and bounding the space of hypotheses when the hypothesis language is defined over HCL

Generality orders: θ-subsumption

G. Plotkin (1970). A note on inductive generalization. *Machine Intelligence*, 5:153-163.

G. Plotkin (1971). A further note on inductive generalization. *Machine Intelligence*, 6:101-124.

- ⌘ θ-subsumption implements |- for single clauses
- ⌘ C_1 θ-subsumes C_2 (denoted $C_1 \leq_\theta C_2$) if and only if there exists a variable substitution θ such that $C_1\theta \subseteq C_2$
 - ↳ to check this, first write clauses as disjunctions
 - ↳ $a, b, c \leftarrow d, e, f \Leftrightarrow a \vee b \vee c \vee \neg d \vee \neg e \vee \neg f$
 - ↳ then try to replace variables with constants or other variables
- ⌘ Most often used in ILP
- ⌘ Syntactic generality!!

Generality orders: θ -subsumption (2)

Logical properties

- ⌘ Sound: if c_1 θ -subsumes c_2 then $c_1 \models c_2$
- ⌘ Incomplete: possibly $c_1 \models c_2$ without c_1 θ -subsuming c_2
(but only for recursive clauses)
 - ⌘ $c_1 : p(f(X)) :- p(X)$
 - ⌘ $c_2 : p(f(f(X))) :- p(X)$
- ⌘ Checking θ -subsumption is decidable but NP-complete

Generality orders: θ -subsumption (3)

Algebraic properties

- ⌘ It is a semi-order relation
 - ▣ I.e. transitive and reflexive, not anti-symmetric
- ⌘ It generates equivalence classes
 - ▣ equivalence class: $c_1 \sim c_2$ iff $c_1 \leq_\theta c_2$ and $c_2 \leq_\theta c_1$
 - ▣ c_1 and c_2 are then called *syntactic variants*
 - ▣ c_1 is *reduced clause* of c_2 iff c_1 contains minimal subset of literals of c_2 that is still equivalent with c_2
 - ▣ each equivalence class represented by its reduced clause

Generality orders: θ -subsumption (4)

Algebraic properties (cont.)

- ⌘ It generates a partial order on those equivalence classes
 - ▣ If c_1 and c_2 in different equivalence classes, either $c_1 \leq_\theta c_2$ or $c_2 \leq_\theta c_1$ or neither => anti-symmetry => partial order
- ⌘ Thus, reduced clauses form a lattice
 - ▣ Least/greatest upper/lower bound of two clauses always exists and is unique
 - ▣ Infinite chains $c_1 \leq_\theta c_2 \leq_\theta c_3 \leq_\theta \dots \leq_\theta c$ exist
- ⌘ Looking for good hypothesis = traversing this lattice

Generality orders: generalized subsumption

W. Buntine (1988). Generalized subsumption and its applications to induction and redundancy. *Artificial Intelligence*, 36(2): 149-176.

- ⌘ \mathcal{B} background knowledge
- ⌘ C_1, C_2 two definite clauses
- ⌘ σ a Skolem substitution for C_2 w.r.t. $\{C_1\} \cup \mathcal{B}$

$C_1 \geq_{\mathcal{B}} C_2$ iff there exists a substitution θ for C_1 such that

- ⌘ $\text{head}(C_1)\theta = \text{head}(C_2)$
- ⌘ $\mathcal{B} \cup \text{body}(C_2)\sigma \vdash \text{body}(C_1)\theta\sigma$
- ⌘ $\text{body}(C_1)\theta\sigma$ is ground.

Generality orders: generalized subsumption (2)

⌘ Background knowledge \mathcal{B}

- ☒ $\text{pet}(X) :- \text{cat}(X)$
- ☒ $\text{pet}(X) :- \text{dog}(X)$
- ☒ $\text{small}(X) :- \text{cat}(X)$

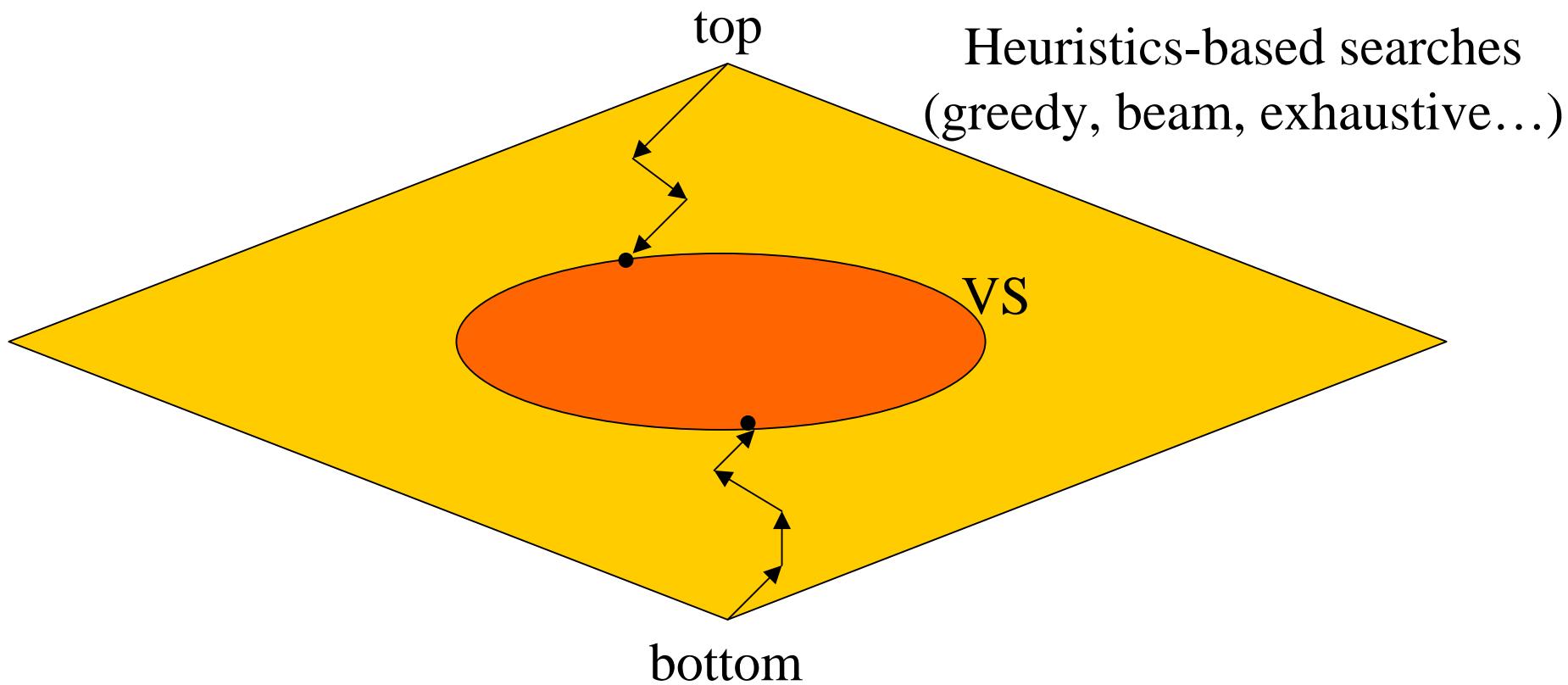
⌘ Clauses:

- ☒ $C_1 = \text{cuddlypet}(X) :- \text{small}(X), \text{pet}(X)$
- ☒ $C_2 = \text{cuddlypet}(X) :- \text{cat}(X)$

⌘ Semantic generality!!

- ☒ $C_1 \geq_{\mathcal{B}} C_2$
- ☒ θ - subsumption fails

Refinement operators



Refinement operators: properties

- ⌘ How to traverse hypothesis space so that
 - ◻ no hypotheses are generated more than once?
 - ◻ no hypotheses are skipped?

- ⌘ Properties of refinement operators
 - ◻ globally complete: each point in lattice is reachable from top
 - ◻ locally complete: each point directly below c is in $\rho(c)$ (useful for greedy systems)
 - ◻ optimal: no point in lattice is reached twice (useful for exhaustive systems)
 - ◻ minimal, proper, .

Dr. Francesca A. Lisi

Refinement operators:

Igg

G. Plotkin (1970). A note on inductive generalization. *Machine Intelligence*, 5:153-163.

⌘ Bottom-up search in clausal spaces

- ⌘ Starts from 2 clauses and compute least general generalisation (Igg)
- ⌘ i.e., given 2 clauses, return most specific single clause that is more general than both of them

⌘ We shall consider only the case of clausal spaces ordered according to θ -subsumption

- ⌘ Igg under θ -subsumption

Refinement operators:

Igg (2)

⌘ Definition of **Igg of terms**:

- ↪ (let s_i, t_j denote any term, V a variable)
 - ↪ $\text{Igg}(f(s_1, \dots, s_n), f(t_1, \dots, t_n)) = f(\text{Igg}(s_1, t_1), \dots, \text{Igg}(s_n, t_n))$
 - ↪ $\text{Igg}(f(s_1, \dots, s_n), g(t_1, \dots, t_n)) = V$

⌘ Definition of **Igg of literals**:

- ↪ $\text{Igg}(p(s_1, \dots, s_n), p(t_1, \dots, t_n)) = p(\text{Igg}(s_1, t_1), \dots, \text{Igg}(s_n, t_n))$
- ↪ $\text{Igg}(\neg p(\dots), \neg p(\dots)) = \neg \text{Igg}(p(\dots), p(\dots))$
- ↪ $\text{Igg}(p(s_1, \dots, s_n), q(t_1, \dots, t_n))$ is undefined
- ↪ $\text{Igg}(p(\dots), \neg p(\dots))$ and $\text{Igg}(\neg p(\dots), p(\dots))$ are undefined

⌘ Definition of **Igg of clauses**:

- ↪ $\text{Igg}(c_1, c_2) = \{\text{Igg}(l_1, l_2) \mid l_1 \in c_1, l_2 \in c_2 \text{ and } \text{Igg}(l_1, l_2) \text{ defined}\}$

Refinement operators: relative lgg

G. Plotkin (1971). A further note on inductive generalization. *Machine Intelligence*, 6:101-124.

⌘ relative to "background theory" B

- assume B is a set of facts

⌘ $\text{rlgg}(e_1, e_2) = \text{lgg}(e_1 :- B, e_2 :- B)$

⌘ method to compute:

- change facts into clauses with body B

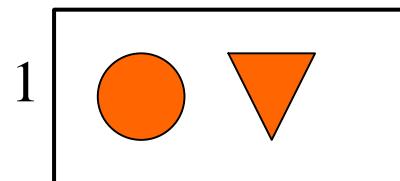
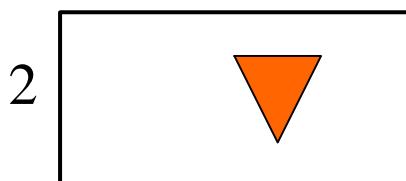
- compute lgg of clauses

- remove B, reduce

⌘ Used in the ILP system Golem (Muggleton & Feng)

Refinement operators: example

Given the following 2 simple Bongard configurations, find least general clause that would predict both to be positive



pos(1).	pos(2).
contains(1,o1).	contains(2,o3).
contains(1,o2).	
triangle(o1).	triangle(o3).
points(o1,down).	points(o3,down).
circle(o2).	

Refinement operators: example

⌘ Method 1: represent example by clause;
compute lgg of examples

```
pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),  
          points(o1,down), circle(o2).  
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).
```

```
lgg(  
(pos(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down), circle(o2)) ,  
(pos(2) :- contains(2,o3), triangle(o3), points(o3,down))  
= pos(X) :- contains(X,Y), triangle(Y), points(Y,down)
```


Refinement operators: example

⌘ Method 2: represent class of example by fact, other properties in background;
compute rlgg

Examples:

pos(1).
pos(2).

Background:

contains(1,o1).	contains(2,o3).
contains(1,o2).	
triangle(o1).	triangle(o3).
points(o1,down).	points(o3,down).
circle(o2).	

rlgg(pos(1), pos(2)) = ? (exercise)

Refinement operators: Shapiro's specialization operator

E. Shapiro (1971). *An algorithm that infers theories from facts*. Proc. of the 7th Int. Conf. on Artificial Intelligence, pp. 446-451.

- ⌘ Top down search in clausal spaces ordered according to theta-subsumption:
 - ⌘ $\rho(c)$ yields set of refinements of c
 - ⌘ theory: $\rho(c) = \{c' \mid c' \text{ is a maximally general specialisation of } c\}$
 - ⌘ practice: $\rho(c) \subseteq \{c \cup \{l\} \mid l \text{ is a literal}\} \cup \{c\theta \mid \theta \text{ is a substitution}\}$
- ⌘ Used in many ILP systems

Declarative bias

C. Nedellec et al. (1996). *Declarative bias in ILP*. In L. De Raedt (ed.), *Advances in Inductive Logic Programming*, IOS Press.

⌘ Language bias

─ Specifies and restricts the set of clauses or theories that are permitted (language of hypotheses)

⌘ Search bias

─ Concerns the way the system searches through the hypothesis space

⌘ Validation bias

─ Determines when the learned theory is acceptable, so when the learning process may stop.

ILP logical settings

L. De Raedt, L. Dehaspe (1997). *Clausal Discovery*. Machine Learning 26(2-3): 99-146.

⌘ Orthogonality of the following two dimensions

⌘ Scope of induction

 ⌘ discriminant vs. characteristic induction

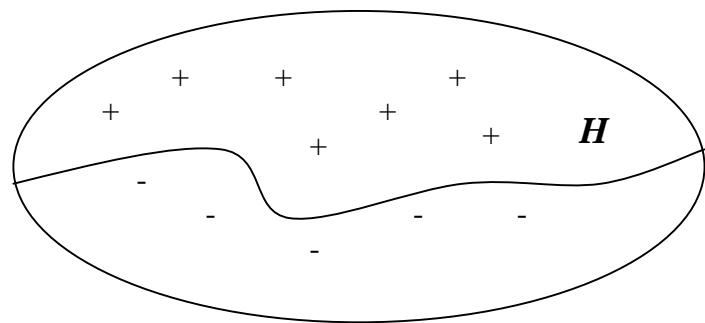
⌘ Representation of the observations

 ⌘ learning from implications vs. learning from interpretations

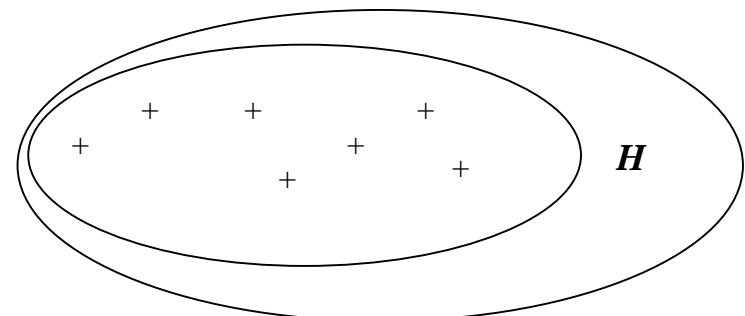
leads to 4 different logical settings for ILP

ILP logical settings: Predictive vs Descriptive ILP

Prediction



Description



ILP logical settings: Learning from entailment

Examples:

```
pos(1).  
pos(2).  
:- pos(3).
```

Background
knowledge:

```
contains(1,o1).  
contains(1,o2).  
contains(2,o3).  
triangle(o1).  
triangle(o3).  
points(o1,down).  
points(o3,down).  
circle(o2).  
contains(3,o4).  
circle(o4).
```

Hypothesis:

```
pos(X) :- contains(X,Y),  
triangle(Y), points(Y,down).
```

Example = a fact e
(or clause $e:-B$)

ILP logical settings: Learning from interpretations

all information that intuitively belongs to the example, is represented in the example, not in the background knowledge!

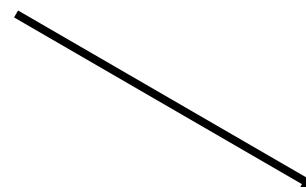
Examples:

```
pos(1) :- contains(1,o1), contains(1,o2), triangle(o1),  
points(o1,down), circle(o2).  
pos(2) :- contains(2,o3), triangle(o3), points(o3,down).  
:- pos(3), contains(3,o4), circle(o4).
```

Background knowledge:

```
polygon(X) :- triangle(X).  
polygon(X) :- square(X).
```

knowledge concerning the domain,
not concerning specific examples!



Hypothesis:

```
pos(X) :- contains(X,Y),  
triangle(Y), points(Y,down).
```


ILP logical settings: Learning from interpretations (3)

- Example as a set of facts (intepretation)
- CWA made *inside* interpretations

Examples:

```
pos: {contains(o1), contains(o2), triangle(o1),  
      points(o1,down), circle(o2)}  
pos: {contains(o3), triangle(o3), points(o3,down)}  
neg: {contains(o4), circle(o4)}
```

Background knowledge:

```
polygon(X) :- triangle(X).  
polygon(X) :- square(X).
```

$\exists Y: \text{contains}(Y), \text{triangle}(Y), \text{points}(Y, \text{down}).$

constraint on pos

ILP logical settings: some remarks

⌘ When learning from interpretations

1. You can dispose of an “example identifier”
 - ☒ but can also use standard format
2. You assume CWA for each example description
 - ☒ i.e., example description is assumed to be complete
3. You have class of example related to information inside example + background information, NOT to information in other examples

⌘ Because of 3rd property, more limited than learning from entailment

- ☒ You cannot learn relations between examples, nor recursive clauses

⌘ ... but also more efficient because of 2nd and 3rd property

- ☒ positive PAC-learnability results (De Raedt and Džeroski, 1994), vs. negative results for learning from entailment

Part II: Overview

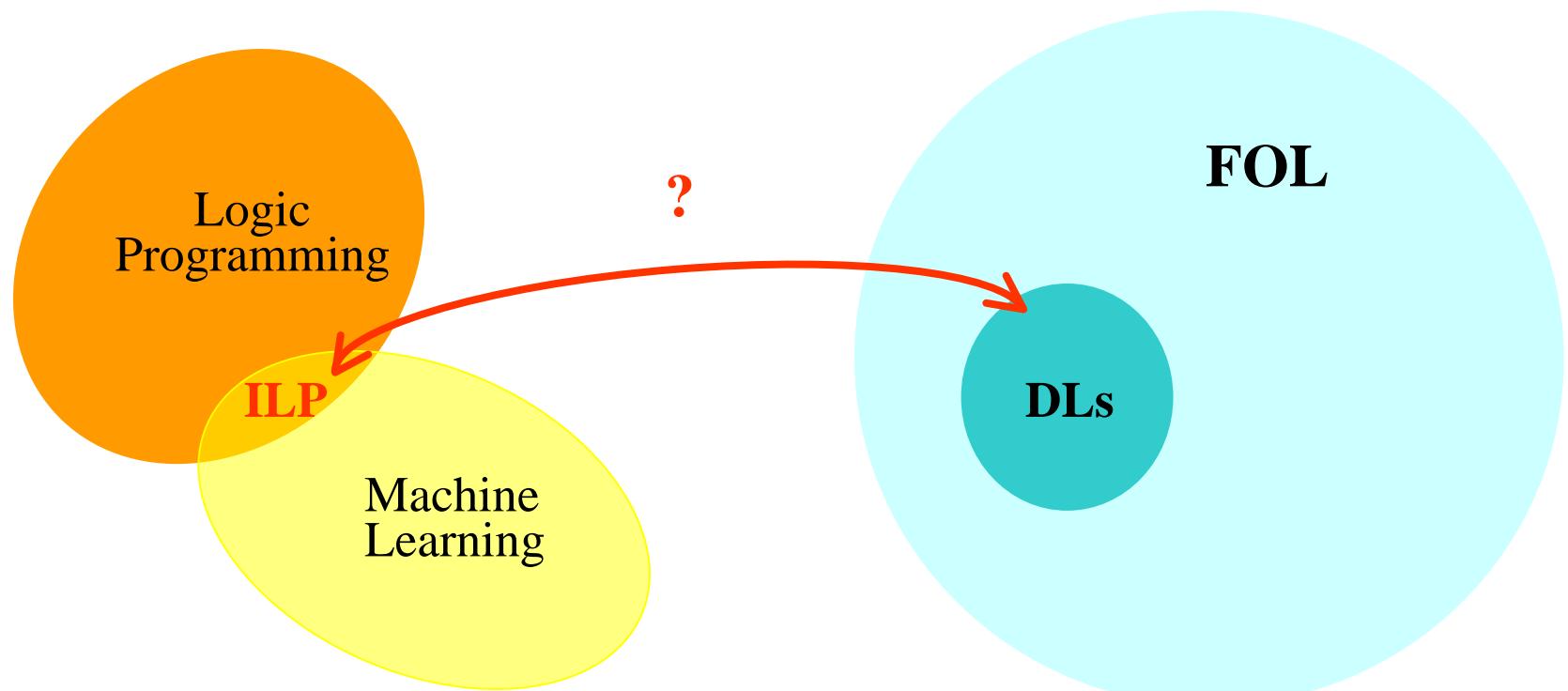
⌘ Introduction to ILP

⌘ *ILP and DL representations*

⌘ ILP and hybrid DL-HCL representations

⌘ ILP and the Semantic Web: Research directions

Learning in DLs



Learnability of DLs

W.W. Cohen & H. Hirsh (1992). *Learnability of Description Logics*. Proc. of the Fifth Annual Workshop on Computational Learning Theory (COLT92), pp. 116-127. ACM Press.

M. Frazier & L. Pitt (1994). *CLASSIC learning*. In Proc. of the Seventh Annual Conference on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.

- ⌘ Learnability of sublanguages of CLASSIC w.r.t. the PAC learning model
- ⌘ LCS used as a means for inductive learning from examples assumed to be concept descriptions

Learning in CLASSIC

W.W. Cohen & H. Hirsh (1994). *Learning the CLASSIC Description Logic: Theoretical and Experimental Results*. Proc. of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR94), pages 121-133.

- ⌘ Supervised learning
 - ✉ Classified examples: ABox individuals
 - ✉ Goal: induce new concepts to be added to the TBox
- ⌘ Search direction: bottom-up
- ⌘ Algorithm: LCSLearn/LCSLearnDISJ
 1. Apply the MSC operator to compute the minimal Tbox generalizations of the examples
 2. Apply the LCS operator to generalize the MSC descriptions of examples
- ⌘ Limits: overly specific concept definitions

Learning in BACK

J.-U. Kietz & K. Morik (1994). *A Polynomial Approach to the Constructive Induction of Structural Knowledge*. Machine Learning 14(1): 193-217.

- ⌘ Unsupervised learning
 - ✉ Unclassified examples: ABox individuals
 - ✉ Goal: induce new concepts to be added to the TBox
- ⌘ Search direction: bottom-up
- ⌘ Algorithm: KLUSTER
 - 1. Cluster the ABox individuals into n mutually disjoint concepts so that n supervised learning problems are obtained
 - 2. Find a correct definition of each of these concepts as follows:
 1. Compute and evaluate the *most specific generalization* (MSG) of a concept by applying the MSC operator;
 2. Obtain the *most general discrimination* (MGD) of the concept by further generalizing the MSG.

Refinement operators for DLs

L. Badea & S.-H. Nienhuys-Cheng (2000). *A Refinement Operator for Description Logics*.
In J. Cussens & A. Frisch (eds): Inductive Logic Programming, LNAI 1866, pp. 40-59

- # Complete and proper refinement operator for \mathcal{ALER}
- # No minimal refinement operators exist for \mathcal{ALER}
 - ▣ Minimality of all refinement steps can be achieved except for those introducing
- # Complete refinement operators for \mathcal{ALER} can not be locally finite
- # An upward refinement operator can be obtained by inverting the arrows in the refinement rules of the downward one

Refinement operators for DLs (2)

J. Lehmann & P. Hitzler (2007b). *Foundations of Refinement Operators for Description Logics*. In: Proceedings of the 17th Int. Conf. on Inductive Logic Programming.

- ⌘ Let \mathcal{L} be a DL which allows to express $\top, \perp, \sqcap, \sqcup, \exists$ and \forall
 - ↳ E.g. \mathcal{ALC}
- ⌘ Maximal sets of properties of \mathcal{L} refinement operators
 1. {Weakly complete, complete, finite}
 2. { Weakly complete, complete, proper}
 3. { Weakly complete, non-redundant, finite}
 4. { Weakly complete, non-redundant, proper}
 5. { Non-redundant, finite, proper}
- ⌘ Application: learning in \mathcal{ALC} (Lehmann & Hitzler, 2007a)

Learning in \mathcal{ALC}

F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Knowledge-intensive induction of terminologies from metadata*. Proc. of the 3rd International Semantic Web Conference (ISWC04), volume 3298 of Springer LNCS, pp. 411-426.

⌘ Supervised learning

- ⌘ Classified examples: ABox individuals
- ⌘ Goal: find a correct Tbox concept definition

⌘ Search direction: bottom-up/top-down

⌘ Algorithm: YinYang

1. Apply the MSC operator to compute the minimal Tbox generalizations of the examples
2. Apply *downward and upward refinement operators* for \mathcal{ALC} to converge towards a correct concept definition

⌘ <http://www.di.uniba.it/~iannone/yinyang/>

Learning in $\mathcal{ALC}(2)$

N. Fanizzi, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Concept Formation in Expressive Description Logics*. In J.F. Boulicault et al. (eds.): Proc. of the 15th European Conference on Machine Learning, *ECML04*, pp. 99-110, Springer.

⌘ Unsupervised learning

- ☒ Unclassified examples: ABox individuals
- ☒ Goal: induce new concepts to be added to the TBox

⌘ Algorithm: CSKA

1. Cluster the ABox individuals into *mutually disjoint concepts* (see KLUSTER)
2. For each of these concepts find a correct concept definition by applying *downward and upward refinement operators* for \mathcal{ALC} (see Yin/Yang)

⌘ Application: ontology refinement

Learning in $\mathcal{ALC}(3)$

C. d'Amato, N. Fanizzi, & F. Esposito (2006). *Reasoning by Analogy in Description Logics through Instance-based Learning*. Proc. of the 3rd Italian Semantic Web Workshop.

⌘ Algorithm: kNN-DL

- ℳ instance-based learning system
- ℳ based on structural/semantic *(dis)similarity measures*

N. Fanizzi, C. d'Amato, F. Esposito. *Instance Based Retrieval by Analogy*. SAC 2007 SDRC Track, 11-15 March 2007, Seoul, Korea

⌘ Algorithm: DiVS-kNN

- ℳ instance-based learning system
- ℳ Based on *disjunctive version space*

Learning in $\mathcal{ALC}(4)$

N. Fanizzi & C. d'Amato (2006). *A Declarative Kernel for \mathcal{ALC} Concept Descriptions*.

ISMIS 2006: Lecture Notes in Computer Science 4203, pp. 322-331

⌘ Task: classification

⌘ From distances to kernels

- Kernel is a similarity measure (can be obtained from distances)
- Kernel machine = algorithm parameterized by kernels

Learning in DLs: bibliography

- ⌘ J. Alvarez (1998). A Description Logic System for Learning in Complex Domains. Proc. of the 1998 Int. Workshop on Description Logics (DL'98).
- ⌘ J. Alvarez (2000a). A Formal Framework for Theory Learning using Description Logics. Proc. of Int. Workshop on Inductive Logic Programming (ILP'00), work in progress track.
- ⌘ J. Alvarez (2000b). TBox Acquisition and Information Theory. In: Proc. of the 2000 Int. Workshop on Description Logics (DL'00).
- ⌘ L. Badea & S.-H. Nienhuys-Cheng (2000a). A Refinement Operator for Description Logics. ILP 2000: 40-59
- ⌘ L. Badea & S.-H. Nienhuys-Cheng (2000b). Refining Concepts in Description Logics. Description Logics 2000: 31-44

Learning in DLs: bibliography (2)

- ⌘ W.W. Cohen, A. Borgida, & H. Hirsh (1992). *Computing Least Common Subsumers in Description Logics*. Proc. of the Tenth National Conf. on Artificial Intelligence (AAAI92), pages 754-760. AAAI Press/MIT Press.
- ⌘ W.W. Cohen & H. Hirsh (1992). *Learnability of Description Logics*. Proc. of the Fifth Annual Workshop on Computational Learning Theory (COLT92), pages 116-127. ACM Press.
- ⌘ W.W. Cohen & H. Hirsh (1994a). *Learning the CLASSIC Description Logic: Theoretical and Experimental Results*. Proc. of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR94), pages 121-133.
- ⌘ W.W. Cohen & H. Hirsh (1994b). *The Learnability of Description Logics with Equality Constraints*. Machine Learning, 17(2):169-199.

Learning in DLs: bibliography (3)

- ⌘ C. d'Amato, N. Fanizzi, & F. Esposito (2006). *A dissimilarity measure for ALC concept descriptions*. SAC 2006: 1695-1699
- ⌘ C. d'Amato & N. Fanizzi (2006). *Lazy Learning from Terminological Knowledge Bases*. Proc. 16th International Symposium on Methodologies for Intelligent Systems, 27-29 September 2006, Bari, Italy
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2004). *Knowledge-Intensive Induction of Terminologies from Metadata*. International Semantic Web Conference 2004: 441-455
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2005). *A Counterfactual-Based Learning Algorithm for Description Logic*. AI*IA 2005: 406-417
- ⌘ F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro: *Induction and Revision of Terminologies*. ECAI 2004: 1007-1008

Learning in DLs: bibliography (4)

- ⌘ N. Fanizzi & C. d'Amato (2006). *A Declarative Kernel for ALC Concept Descriptions*. ISMIS: 322-331.
- ⌘ N. Fanizzi, S. Ferilli, L. Iannone, I. Palmisano, & G. Semeraro (2004). *Downward Refinement in the ALN Description Logic*. HIS 2004: 68-73.
- ⌘ N. Fanizzi, L. Iannone, I. Palmisano, G. Semeraro (2004). *Concept Formation in Expressive Description Logics*. ECML 2004: 99-110.
- ⌘ M. Frazier & L. Pitt (1994). *CLASSIC learning*. In Proceedings of the Seventh Annual Conference on Computational Learning theory (COLT '94). ACM Press, New York, NY, 23-34.
- ⌘ M. Frazier & L. Pitt (1996). *CLASSIC Learning*. Machine Learning, 25 (2-3): 151-193.

Learning in DLs: bibliography (5)

- ⌘ L. Iannone, I. Palmisano and N. Fanizzi (2007). *An algorithm based on counterfactuals for concept learning in the Semantic Web*. Applied Intelligence, 26(2): 139-159.
- ⌘ J. Lehmann & P. Hitzler (2007a). *A Refinement Operator Based Learning Algorithm for the ALC Description Logic*. In: Proceedings of the 17th International Conference on Inductive Logic Programming (ILP) 2007
- ⌘ J. Lehmann & P. Hitzler (2007b). *Foundations of Refinement Operators for Description Logics*. In: Proceedings of the 17th International Conference on Inductive Logic Programming (ILP) 2007
- ⌘ V. Ventos, P. Brézellec, H. Soldano, D. Bouthinon (1998). *Learning Concepts in C-CLASSIC(delta/epsilon)*. Description Logics 1998

Part II: Overview

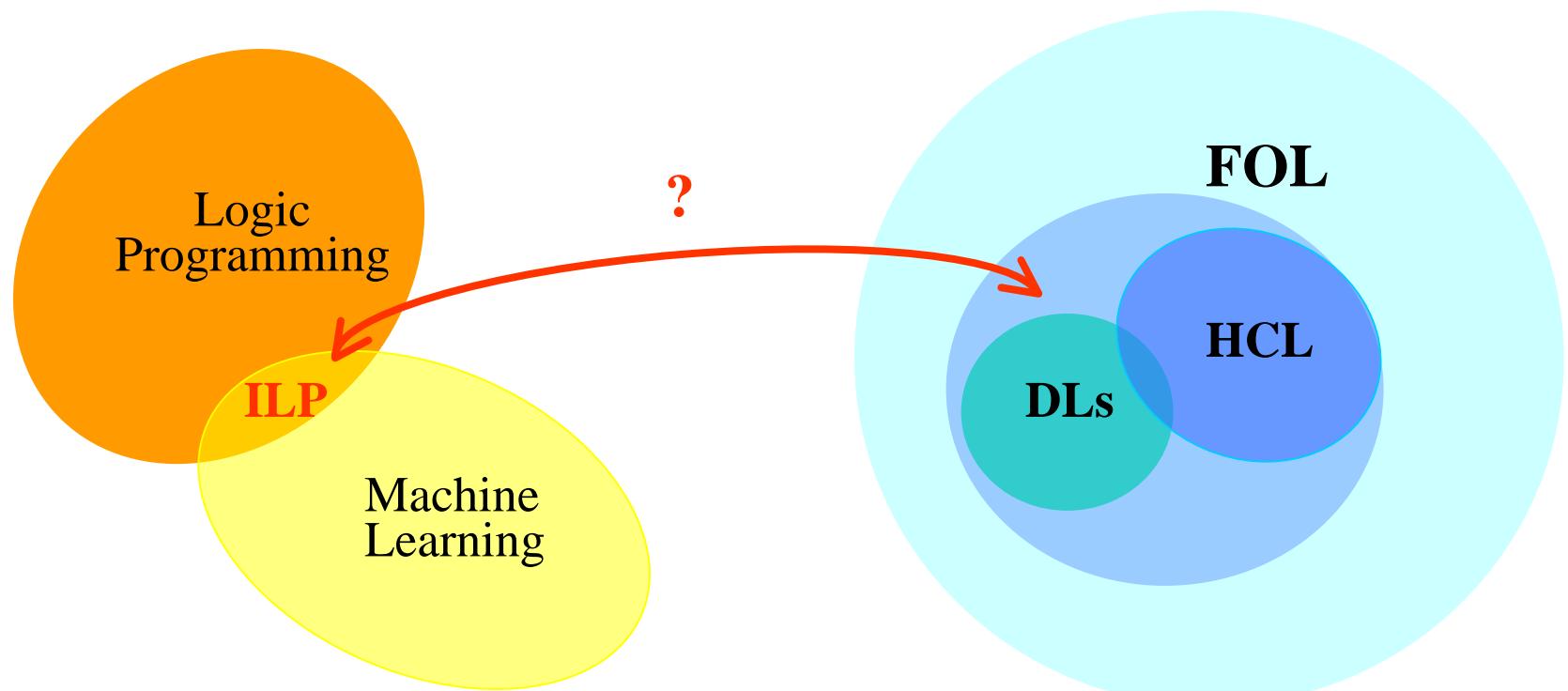
⌘ Introduction to ILP

⌘ ILP and DL representations

⌘ *ILP and hybrid DL-HCL representations*

⌘ ILP and the Semantic Web: Research directions

Learning in DL-HCL



Learning in CARIN- \mathcal{ALN}

C. Rouveirol & V. Ventos (2000). *Towards learning in CARIN- \mathcal{ALN}* . In J. Cussens & A. Frisch (eds): Inductive Logic Programming, Springer LNAI 1866, 191-208.

- ⌘ Scope of induction: prediction
- ⌘ Logical setting: learning from interpretations
- ⌘ Language of hypotheses: definite clauses in CARIN- \mathcal{ALN}
- ⌘ Generality order: adaptation of Buntine's generalized subsumption to CARIN- \mathcal{ALN}
- ⌘ Coverage relations: query answering in CARIN- \mathcal{ALN}

Learning in CARIN- \mathcal{ALN} (2)

J.-U. Kietz (2003). *Learnability of description logic programs*. In S. Matwin and C. Sammut (Eds.), Inductive Logic Programming, Springer LNAI 2583, 117-132.

- ⌘ Method for transforming CARIN- \mathcal{ALN} into Datalog extended with numerical constraints
- ⌘ Transfer of learnability results known for ILP to learning in CARIN- \mathcal{ALN}

Learning in $\mathcal{AL}\text{-log}$

F.A. Lisi (2005). *Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in AL-log*. In F. Fages and S. Soliman (Eds.), *Principles and Practice of Semantic Web Reasoning*, Springer LNCS 3703, 118-132.

- ⌘ Scope of induction: prediction/description
- ⌘ Logical setting: learning from interpretations/learning from implications
- ⌘ Language of hypotheses: constrained Datalog clauses
- ⌘ Generality order: adaptation of Buntine's generalized subsumption to $\mathcal{AL}\text{-log}$
- ⌘ Coverage relations: query answering in $\mathcal{AL}\text{-log}$

Learning in DL-HCL: Bibliography

- ⌘ A.M. Frisch (1991). *The Substitutional Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning*. Artif. Intell. 49(1-3): 161-198.
- ⌘ A.M. Frisch (1999). *Sorted downward refinement: Building background knowledge into a refinement operator for inductive logic programming*. In S. Dzeroski and P.A. Flach (Eds.), Inductive Logic Programming, Springer LNAI 1634, 104-115 .
- ⌘ J.-U. Kietz (2003). *Learnability of description logic programs*. In S. Matwin and C. Sammut (Eds.), Inductive Logic Programming, Springer LNAI 2583, 117-132.
- ⌘ F.A. Lisi (2005). *Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in AL-log*. In F. Fages and S. Soliman (Eds.), Principles and Practice of Semantic Web Reasoning, Springer LNCS 3703, 118-132.

Learning in DL-HCL: Bibliography (2)

- ⌘ F.A. Lisi (2006). *Practice of Inductive Reasoning on the Semantic Web*. In: J.J. Alferes, J. Bailey, W. May, U. Schwertel (Eds.), *Principles and Practice of Semantic Web Reasoning*, Springer LNCS 4187, 242-256.
- ⌘ F.A. Lisi & F. Esposito (2004). *Efficient Evaluation of Candidate Hypotheses in AL-log*. In R. Camacho, R. King, and A. Srinivasan (Eds.), *Inductive Logic Programming*, Springer LNAI 3194, 216-233.
- ⌘ F.A. Lisi & F. Esposito (2006). *Two Orthogonal Biases for Choosing the Intentions of Emerging Concepts in Ontology Refinement*. In G. Brewka, S. Coradeschi, A. Perini & P. Traverso (Eds.): *ECAI 2006. Proc. of the 17th European Conf. on Artificial Intelligence*, IOS Press: Amsterdam, 765-766.
- ⌘ F.A. Lisi & F. Esposito (2007). *On the Missing Link between Frequent Pattern Discovery and Concept Formation*. To appear in: S. Muggleton, R. Otero & A. Tamaddoni-Nezhad (Eds.), *Inductive Logic Programming*, Springer LNAI ?, ?-?.

Learning in DL-HCL: Bibliography (3)

- ⌘ F.A. Lisi & D. Malerba (2003). *Ideal Refinement of Descriptions in \mathcal{AL} -log*. In T. Horvath and A. Yamamoto (Eds.), Inductive Logic Programming, LNAI 2835, 215-232, Springer: Berlin.
- ⌘ F.A. Lisi & D. Malerba (2003). *Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning*. In A. Cappelli and F. Turini (Eds.), AI*IA 2003: Advances in Artificial Intelligence, LNAI 2829, 53-64, Springer: Berlin.
- ⌘ F.A. Lisi & D. Malerba (2004). *Inducing Multi-Level Association Rules from Multiple Relations*. Machine Learning, 55:175-210.
- ⌘ C. Rouveirol & V. Ventos (2000). *Towards learning in CARIN- \mathcal{ALN}* . In J. Cussens & A. Frisch (eds): Inductive Logic Programming, Springer LNAI 1866, 191-208.

Part II: Overview

- ⌘ Introduction to ILP
- ⌘ ILP and DL representations
- ⌘ ILP and hybrid DL-HCL representations
- ⌘ *ILP and the Semantic Web: Research directions*

ILP and the Semantic Web: research directions in theory

- ⌘ ILP frameworks for learning/mining in more expressive DLs and DL-HCL hybridizations
 - ↗ closer to OWL and SWRL
- ⌘ ILP frameworks for learning/mining under uncertainty and vagueness
 - ↗ closer to real-world ontologies
- ⌘ ILP frameworks for learning/mining from multiple contexts
 - ↗ Closer to the real scenario of the Semantic Web

ILP and the Semantic Web: research directions in practice

- ⌘ Efficient implementations
- ⌘ Interfacing of ILP systems with specialized reasoners for the Semantic Web
 - ▣ (Fuzzy) OWL/SWRL reasoners
- ⌘ Experimental work on big OWL/SWRL ontologies

ILP and the Semantic Web: applications for learning in DLs

- ⌘ Ontology Refinement
- ⌘ Ontology Matching
- ⌘ Ontology Merging
- ⌘ FOAF
- ⌘ Semantic retrieval
- ⌘ Etc.

ILP and the Semantic Web: applications for learning in DL-HCL

⌘ Ontology Refinement

◻ Some concepts are better defined with rules

⌘ Ontology Mapping

⌘ Semantic Web Services

⌘ Business rules

⌘ Policy rules

⌘ Etc.

Potentially all RIF use cases!

Further resources

⌘ Tutorials on the Semantic Web

- ↗ <http://www.w3.org/2001/sw/BestPractices/Tutorials>
- ↗ <http://km.aifb.uni-karlsruhe.de/ws/prowl2006/>
- ↗ <http://rease.semanticweb.org/>

⌘ Tutorials on Machine Learning for the Semantic Web

- ↗ http://www.aifb.uni-karlsruhe.de/WBS/pci/OL_Tutorial_ECML_PKDD_05/
- ↗ <http://www.uni-koblenz.de/~staab/Research/Events/ICML05tutorial/icml05tutorial.pdf>
- ↗ <http://www.smi.ucd.ie/Dagstuhl-MLSW/proceedings/>
- ↗ <http://ingenieur.kahosl.be/projecten/swa2002/slides/hendrik%20blockeel/Blockeel.ppt>

