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Roadmap
SRL: What is it?
SRL Tasks & Challenges
4 SRL Approaches
Applications and Future directions

Why SRL?
Traditional statistical machine learning approaches assume:

A random sample of homogeneous objects from single relation

Traditional ILP/relational learning approaches assume:
No noise or uncertainty in data

Real world data sets:
Multi-relational, heterogeneous and semi-structured
Noisy and uncertain

Statistical Relational Learning:
newly emerging research area at the intersection of research in 
social network and link analysis, hypertext and web mining, graph 
mining, relational learning and inductive logic programming

Sample Domains:
web data, bibliographic data, epidemiological data, communication 
data, customer networks, collaborative filtering, trust networks, 
biological data, natural language, vision
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What is SRL?
Three views…

View 1: Alphabet Soup
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View 2: Representation Soup

Hierarchical Bayesian Model + Relational 
Representation

Logic Add probabilities

Add relationsProbabilities

Statistical

Relational

Learning

View 3: Data Soup

Training Data Test Data
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View 3: Data Soup

Training Data Test Data

View 3: Data Soup

Training Data Test Data
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View 3: Data Soup

Training Data Test Data

View 3: Data Soup

Training Data Test Data
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View 3: Data Soup

Training Data Test Data

Goals
By the end of this tutorial, hopefully, you will be:

1. able to distinguish among different SRL tasks
2. able to represent a problem in one of several SRL 

representations
3. excited about SRL research problems and practical 

applications
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Roadmap
SRL: What is it?
SRL Tasks & Challenges
4 SRL Approaches
Applications and Future directions

SRL Tasks
Tasks

Object Classification
Object Type Prediction
Link Type Prediction
Predicting Link Existence
Link Cardinality Estimation
Entity Resolution
Group Detection 
Subgraph Discovery
Metadata Mining
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Object Prediction

Object Classification
Predicting the category of an object based on its 
attributes and its links and attributes of linked objects
e.g., predicting the topic of a paper based on the words 
used in the paper, the topics of papers it cites, the 
research interests of the author

Object Type Prediction
Predicting the type of an object based on its attributes and
its links and attributes of linked objects
e.g., predict the venue type of a publication (conference, 
journal, workshop) based on properties of the paper

Link Prediction
Link Classification

Predicting type or purpose of link based on properties of the 
participating objects 
e.g., predict whether a citation is to foundational work, 
background material, gratuitous PC reference 

Predicting Link Existence
Predicting whether a link exists between two objects
e.g. predicting whether a paper will cite another paper

Link Cardinality Estimation
Predicting the number of links to an object or predicting the 
number of objects reached along a path from an object
e.g., predict the number of citations of a paper
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More complex prediction tasks
Group Detection

Predicting when a set of entities belong to the same group based
on clustering both object attribute values and link structure
e.g., identifying research communities

Entity Resolution
Predicting when a collection of objects are the same, based on 
their attributes and their links (aka: record linkage, identity 
uncertainty) 
e.g., predicting when two citations are referring to the same 
paper. 

Predicate Invention
Induce a new general relation/link from existing links and paths
e.g., propose concept of advisor from co-author and financial 
support

Subgraph Identification, Metadata Mapping

SRL Challenges
Collective Classification
Collective Consolidation 
Logical vs. Statistical dependencies
Feature Construction – aggregation, selection
Flexible and Decomposable Combining Rules
Instances vs. Classes
Effective Use of Labeled & Unlabeled Data
Link Prediction
Closed vs. Open World

Challenges common to any SRL approachl!
Bayesian Logic Programs, Markov Logic Networks, Probabilistic Relational Models, 

Relational Markov Networks, Relational Probability Trees, Stochastic Logic 
Programming to name a few
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Roadmap
SRL: What is it?
SRL Tasks & Challenges
4 SRL Approaches
Applications and Future directions

Four SRL Approaches
Directed Approaches

Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Frame-based Undirected Models
Rule-based Undirected Models

Programming Language Approaches (oops, five!)
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Emphasis in Different Approaches
Rule-based approaches focus on facts

what is true in the world?
what facts do other facts depend on?

Frame-based approaches focus on objects and relationships
what types of objects are there, and how are they related to each 
other?
how does a property of an object depend on other properties (of 
the same or other objects)?

Directed approaches focus on causal interactions
Undirected approaches focus on symmetric, non-causal 
interactions
Programming language approaches focus on processes

how is the world generated?
how does one event influence another event? 

Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Rule-based Undirected Models
Frame-based Undirected Models
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Bayesian Networks

Good Writer Smart

Quality

AcceptedReview 
Length

nodes = domain variables
edges = direct causal influence

Network structure encodes conditional independencies:
I(Review-Length , Good-Writer | Reviewer-Mood)
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BN Semantics

Compact & natural representation:
nodes ≤ k parents  ⇒ O(2k n) vs. O(2n) params
natural parameters

conditional
independencies
in BN structure

+ local
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full joint
distribution

over domain

W

M

S

Q

AL

),()|(),|()|()()(
),,,,,(

qmaPmlPswqPwmPsPwP
alqmswP

|
=

13



Reasoning in BNs
Full joint distribution answers any query

P(event | evidence)

Allows combination of different types of reasoning:
Causal: P(Reviewer-Mood | Good-Writer)
Evidential: P(Reviewer-Mood | not Accepted)
Intercausal: P(Reviewer-Mood | not Accepted, 
Quality)

W

M
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Q
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true
false
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0
1 A factor is a function from 

values of variables to 
positive real numbers 

Variable Elimination
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Other Inference Algorithms
Exact 

Junction Tree [Lauritzen & Spiegelhalter 88]
Cutset Conditioning [Pearl 87]

Approximate
Loopy Belief Propagation [McEliece et al 98]
Likelihood Weighting [Shwe & Cooper 91]
Markov Chain Monte Carlo [eg MacKay 98]

• Gibbs Sampling [Geman & Geman 84]
• Metropolis-Hastings [Metropolis et al 53, Hastings 70]

Variational Methods [Jordan et al 98]

Learning BNs

Parameters only Structure and
Parameters

Complete Data

Incomplete Data

See [Heckerman 98] for a general introduction

Easy: counting Structure search

EM [Dempster et al 77]
or gradient descent 

[Russell et al 95]

Structural EM 
[Friedman 97]
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BN Parameter Estimation
Assume known dependency structure G
Goal: estimate BN parameters θ

entries in local probability models, 

θ is good if it’s likely to generate observed data.

MLE Principle: Choose θ∗ so as to maximize l
Alternative: incorporate a prior

),|(log),:( GDPGDl θθ =

)][Pa|(, uXxXPux ===θ

Learning With Complete Data
Fully observed data: data consists of set of 
instances, each with a value for all BN variables

With fully observed data, we can compute      
= number of instances with   ,     and  

and similarly for other counts

We then estimate

swqN ,,

sw

swq
swq N

N
swqP

,

,,
,, ),|( ==θ

q w s
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Dealing w/ missing values
Can’t compute
But can use Expectation Maximization (EM) 

1. Given parameter values, can compute expected 
counts:

2. Given expected counts, estimate parameters:

Begin with arbitrary parameter values
Iterate these two steps
Converges to local maximum of likelihood

swqN ,,

∑=
i

iiii
swq swqPNE

 instances
,, )evidence|,,(][

][
][

),|(
,

,,
,,

sw

swq
swq NE

NE
swqP ==θ

this requires BN inference

Structure search
Begin with an empty network
Consider all neighbors reached by a search operator 
that are acyclic

add an edge
remove an edge
reverse an edge

For each neighbor
compute ML parameter values
compute score(s) =  

Choose the neighbor with the highest score
Continue until reach a local maximum 

)(log),|(log * sPsDP s +θ

*
sθ
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Mini-BN Tutorial Summary
Representation – probability distribution factored 
according to the BN DAG
Inference – exact + approximate
Learning – parameters + structure

Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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Directed Rule-based Flavors
Goldman & Charniak [93]
Breese [92]
Probabilistic Horn Abduction [Poole 93]
Probabilistic Logic Programming [Ngo & Haddawy 96]
Relational Bayesian Networks [Jaeger 97]
Bayesian Logic Programs [Kersting & de Raedt 00]
Stochastic Logic Programs [Muggleton 96]
PRISM [Sato & Kameya 97]
CLP(BN) [Costa et al. 03]
Logical Bayesian Networks [Fierens et al 04, 05]
etc.

Intuitive Approach
In logic programming, 

accepted(P) :- author(P,A), famous(A).

means
For all P,A if A is the author of P and A is famous, then P

is accepted
This is a categorical inference
But this may not be true in all cases
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Fudge Factors
Use

accepted(P) :- author(P,A), famous(A). (0.6)
This means

For all P,A if A is the author of P and A is famous, then P
is accepted with probability 0.6

But what does this mean when there are other 
possible causes of a paper being accepted?
e.g. accepted(P) :- high_quality(P). (0.8)

Intuitive Meaning
accepted(P) :- author(P,A), famous(A). (0.6)

means
For all P,A if A is the author of P and A is famous, then P

is accepted with probability 0.6, provided no other 
possible cause of the paper being accepted holds

If more than one possible cause holds, a combining 
rule is needed to combine the probabilities
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Meaning of Disjunction
In logic programming

accepted(P) :- author(P,A), famous(A). 
accepted(P) :- high_quality(P).

means 
For all P,A if A is the author of P and A is famous, or if P

is high quality, then P is accepted 

Probabilistic Disjunction
Now

accepted(P) :- author(P,A), famous(A). (0.6)
accepted(P) :- high_quality(P). (0.8)

means
For all P,A, if (A is the author of P and A is famous 

successfully cause P to be accepted) or (P is high 
quality successfully causes P to be accepted), then P
is accepted.

If A is the author of P and A is famous, they successfully 
cause P to be accepted with probability 0.6.

If P is high quality, it successfully causes P to be 
accepted with probability 0.8.

All causes act independently to produce effect (causal independence)
Leak probability: effect may happen with no cause

e.g. accepted(P). (0.1)
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Computing Probabilities
What is P(accepted(p1)) given that Alice is an 
author and Alice is famous, and that the paper is 
high quality, but no other possible cause is true?

92801018016011

1

.).)(.)(.(

))(-(1-1
fail) causes possible true all(

succeeds) cause true one least P(at

success
causes possible true

=−−−−=

=
−=

=

∏ ip
P

P

 i

leak

Combination Rules

Other combination rules are possible
e.g., max

In our case,
P(accepted(p1)) = max {0.6,0.8,0.1} = 0.8
Harder to interpret in terms of logic program

)(maxeffect)( success causes possible true
ipP

i
=
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KBMC
Knowledge-Based Model Construction (KBMC) 
[Wellman et al. 92, Ngo & Haddawy 95]
Method for computing more complex probabilities
Construct a Bayesian network, given a query Q
and evidence E

query and evidence are sets of ground atoms, i.e., 
predicates with no variable symbols

• e.g. author(p1,alice)

Construct network by searching for possible 
proofs of the query and the variables
Use standard BN inference techniques on 
constructed network

KBMC Example

smart(alice). (0.8)
smart(bob). (0.9)
author(p1,alice). (0.7)
author(p1,bob). (0.3)
high_quality(P) :- author(P,A), smart(A). (0.5)
high_quality(P). (0.1)
accepted(P) :- high_quality(P). (0.9)

Query is accepted(p1).
Evidence is smart(bob).
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Backward Chaining
Start with evidence variable smart(bob)

smart(bob)

Backward Chaining
Rule for smart(bob) has no antecedents – stop 

backward chaining

smart(bob)
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Backward Chaining
Begin with query variable accepted(p1)

smart(bob)

accepted(p1)

Backward Chaining

Rule for accepted(p1) has antecedent high_quality(p1)
add high_quality(p1) to network, and make parent of 
accepted(p1)

smart(bob)

high_quality(p1)

accepted(p1)
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Backward Chaining
All of accepted(p1)’s parents have been found –

create its conditional probability table (CPT)

smart(bob)

accepted(p1)

high_quality(p1)
high_quality(p1) accepted(p1)

hq

hq 0.9 0.1

0 1

Backward Chaining
high_quality(p1) :- author(p1,A), smart(A) has two 

groundings: A=alice and A=bob

smart(bob)

high_quality(p1)

accepted(p1)
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Backward Chaining
For grounding A=alice, add author(p1,alice) and 

smart(alice) to network, and make parents of 
high_quality(p1)

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice)

accepted(p1)

Backward Chaining
For grounding A=bob, add author(p1,bob) to network. 

smart(bob) is already in network. Make both 
parents of high_quality(p1)

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

accepted(p1)
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Backward Chaining
Create CPT for high_quality(p1) – make noisy-or

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

accepted(p1)

Backward Chaining
author(p1,alice), smart(alice) and author(p1,bob)

have no antecedents – stop backward chaining

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

accepted(p1)
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Backward Chaining
assert evidence smart(bob) = true, and compute 
P(accepted(p1) | smart(bob) = true)

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

true

accepted(p1)

Backward Chaining on Both 
Query and Evidence

Necessary, if query and evidence have common 
ancestor 

Sufficient. P(Query | Evidence) can be computed 
using only ancestors of query and evidence 
nodes

unobserved descendants are irrelevant

Ancestor

Query Evidence
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The Role of Context
Context is deterministic knowledge known prior to 
the network being constructed

May be defined by its own logic program
Is not a random variable in the BN

Used to determine structure of the constructed BN
If a context predicate P appears in the body of a rule 
R, only backward chain on R if P is true

Context example
Suppose author(P,A) is a context predicate, 

author(p1,bob) is true, and author(p1,alice) cannot 
be proven from deterministic KB (and is therefore 
false by assumption)

Network is

accepted(p1)

high_quality(p1)

smart(bob) No author(p1,bob) node
because it is a context predicate

No smart(alice) node
because author(p1,alice) is false
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Semantics
Assumption: no cycles in resulting BN

If there are cycles, cannot interpret BN as definition 
of joint probability distribution

Assuming BN construction process terminates, 
conditional probability of any query given any 
evidence is defined by the BN.
Somewhat unsatisfying because

1. meaning of program is query dependent (depends 
on constructed BN)

2. meaning is not stated declaratively in terms of 
program but in terms of constructed network 
instead

Disadvantages of Approach

Up until now, ground logical atoms have been 
random variables ranging over T,F

cumbersome to have a different random variable 
for lead_author(p1,alice), lead_author(p1,bob)
and all possible values of lead_author(p1,A)

worse, since lead_author(p1,alice) and 
lead_author(p1,bob) are different random 
variables, it is possible for both to be true at the 
same time
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Bayesian Logic Programs    
[Kersting and de Raedt]

Now, ground atoms are random variables with 
any range (not necessarily Boolean)

now quality is a random variable, with values 
high, medium, low

Any probabilistic relationship is allowed
expressed in CPT

Semantics of program given once and for all
not query dependent

Meaning of Rules in BLPs
accepted(P) :- quality(P).

means
“For all P, if quality(P) is a random variable, then 
accepted(P) is a random variable”

Associated with this rule is a conditional probability 
table (CPT) that specifies the probability distribution 
over accepted(P) for any possible value of
quality(P)
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Combining Rules for BLPs

accepted(P) :- quality(P).
accepted(P) :- author(P,A), fame(A).

Before, combining rules combined individual 
probabilities with each other

noisy-or and max rules easy to interpret
Now, combining rules combine entire CPTs

Semantics of BLPs
Random variables are all ground atoms that have 
finite proofs in logic programs

assumes acyclicity
assumes no function symbols

Can construct BN over all random variables
parents derived from rules
CPTs derived using combining rules

Semantics of BLP: joint probability distribution over 
all random variables

does not depend on query
Inference in BLP by KBMC
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An Issue
How to specify uncertainty over single-valued relations?
Approach 1: make lead_author(P) a random variable taking 
values bob, alice etc.

we can’t say accepted(P) :- lead_author(P), famous(A)
because A does not appear in the rule head or in a 
previous term in the body

Approach 2: make lead_author(P,A) a random variable with 
values true, false

we run into the same problems as with the intuitive 
approach (may have zero or many lead authors)

Approach 3: make lead_author a function
say accepted(P) :- famous(lead_author(P))
need to specify how to deal with function symbols and 
uncertainty over them

First-Order Variable Elimination
[Poole 03, Braz et al 05] 
Generalization of variable elimination to first 
order domains
Reasons directly about first-order variables, 
instead of at the ground level
Assumes that the size of the population for each 
type of entity is known
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Learning Rule Parameters   

[Koller & Pfeffer 97, Sato & Kameya 01] 
Problem definition:

Given a skeleton rule base consisting of rules 
without uncertainty parameters
and a set of instances, each with 

• a set of context predicates
• observations about some random variables

Goal: learn parameter values for the rules that 
maximize the likelihood of the data

Basic Approach
1. Construct a network BNi for each instance i using 

KBMC, backward chaining on all the observed 
variables

2. Expectation Maximization (EM)
• exploit parameter sharing
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Parameter Sharing
In BNs, all random variables have distinct CPTs

only share parameters between different 
instances, not different random variables

In logical approaches, an instance may contain 
many objects of the same kind

multiple papers, multiple authors, multiple citations
Parameters are shared within instances

same parameters used across different papers, 
authors, citations

Parameter sharing allows faster learning, and 
learning from a single instance

Rule Parameters & CPT Entries
In principle, combining rules produce complicated 
relationship between model parameters and CPT 
entries
With a decomposable combining rule, each node 
is derived from a single rule

Most natural combining rules are decomposable
• e.g. noisy-or decomposes into set of ands followed by or
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Parameters and Counts
Each time a node is derived from a rule r, it provides 
one experiment to learn about the parameters 
associated with r

Each such node should therefore make a separate 
contribution to the count for those parameters

: the parameter associated with 
P(X=x|Parents[X]=u) when rule r applies

: the number of times a node has value x and its 
parents have value u when rule r applies

r
ux ,θ

r
uxN ,

EM With Parameter Sharing
Given parameter values, compute expected 
counts:

where the inner sum is over all nodes derived 
from rule r in BNi

Given expected counts, estimate:

Iterate these two steps

)|],(][ ,
i

i X

r
ux uXxXPNE evidenceParents[

 instances 
=== ∑ ∑

][
][ ,

, r
u

r
uxr

ux NE
NE

=θ
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Learning Rule Structure

[Kersting and De Raedt 02] 
Problem definition:

Given a set of instances, each with 
• context predicates
• observations about some random variables

Goal: learn 
• a skeleton rule base consisting of rules and parameter 

values for the rules 

Generalizes BN structure learning
define legal models
scoring function same as for BN
define search operators

Legal Models
Hypothesis space consists of all rule sets using 
given predicates, together with parameter values
A legal hypothesis:

is logically valid: rule set does not draw false 
conclusions for any data cases
the constructed BN is acyclic for every instance
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Search operators
Add a constant-free atom to the body of a single 
clause
Remove a constant-free atom from the body of a 
single clause

accepted(P) :- author(P,A).
accepted(P) :- quality(P).

accepted(P).
accepted(P) :- quality(P).

delete

accepted(P) :- author(P,A), famous(A).
accepted(P) :- quality(P).

add

Summary: Directed Rule-based 
Approaches

Provide an intuitive way to describe how one fact 
depends on other facts
Incorporate relationships between entities
Generalizes to many different situations

Constructed BN for a domain depends on which 
objects exist and what the known relationships are 
between them (context)

Inference at the ground level via KBMC
or lifted inference via FOVE

Both parameters and structure are learnable
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

Frame-based Approaches
Probabilistic Relational Models (PRMs)

Representation & Inference [Koller & Pfeffer 98, 
Pfeffer, Koller, Milch &Takusagawa 99, Pfeffer 00] 
Learning [Friedman et al. 99, Getoor, Friedman, 
Koller & Taskar 01 & 02, Getoor 01]

Probabilistic Entity Relation Models (PERs)
Representation [Heckerman, Meek & Koller 04]
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

• PRMs w/ Attribute Uncertainty
• Inference in PRMs
• Learning in PRMs

• PRMs w/ Structural Uncertainty

• PRMs w/ Class Hierarchies

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

Relational Schema

Author
Good Writer

Author of
Has Review

Describes the types of objects and relations in the 
database

Review

Paper
Quality
Accepted

Mood

LengthSmart
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Probabilistic Relational Model

Length

Mood

Author

Good Writer

Paper

Quality

Accepted

Review
Smart

Probabilistic Relational Model

Length

Mood

Author

Good Writer

Paper

Quality

Accepted

Review
Smart

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Paper.Review.Mood
Paper.Quality,

Paper.Accepted | 
P
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Probabilistic Relational Model

Length

Mood

Author

Good Writer

Paper

Quality

Accepted

Review
Smart

3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ

Fixed relational skeleton σ:
set of objects in each class
relations between them

Author  A1

Paper  P1
Author: A1
Review: R1

Review  R2

Review  R1

Author  A2

Relational Skeleton

Paper  P2
Author: A1
Review: R2

Paper  P3
Author: A2
Review: R2

Primary Keys

Foreign Keys

Review  R2
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Author  A1
Paper  P1

Author: A1
Review: R1

Review  R2

Review  R1

Author  A2

PRM defines distribution over instantiations of attributes

PRM w/ Attribute Uncertainty

Paper  P2
Author: A1
Review: R2

Paper  P3
Author: A2
Review: R2

Good Writer

Smart

Length

Mood

Quality

Accepted

Length

Mood

Review  R3

Length

Mood

Quality

Accepted

Quality

Accepted

Good Writer

Smart

P2.Accepted

P2.Quality r2.Mood

P3.Accepted

P3.Quality
3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQPissyLow

3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ

r3.Mood

A Portion of the BN
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P2.Accepted

P2.Quality r2.Mood

P3.Accepted

P3.Quality

PissyLow

r3.MoodHigh 3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ

Pissy

A Portion of the BN

Length

Mood

Paper

Quality

Accepted

Review

Review R1

Length

Mood

Review R2

Length

Mood

Review R3

Length

Mood

Paper P1

Accepted

Quality

PRM: Aggregate Dependencies
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sum, min, max, 
avg, mode, count

Length

Mood

Paper

Quality

Accepted

Review

Review R1

Length

Mood

Review R2

Length

Mood

Review R3

Length

Mood

Paper P1

Accepted

Quality

mode

3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ

PRM: Aggregate Dependencies

PRM with AU Semantics

)).(|.(),,|( ,
.

AxparentsAxPP S
x Ax

σ
σ

σ ∏ ∏
∈

=ΘSI

AttributesObjects

probability distribution over completions I:

PRM relational skeleton σ+ =

Author

Paper

Review

Author
A1

Paper
P2

Paper
P1

Review
R3

Review
R2

Review
R1

Author
A2

Paper
P3
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

• PRMs w/ Attribute Uncertainty
• Inference in PRMs
• Learning in PRMs

• PRMs w/ Structural Uncertainty

• PRMs w/ Class Hierarchies

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

PRM Inference
Simple idea: enumerate all attributes of all objects
Construct a Bayesian network over all the attributes
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Inference Example

Review
R2

Review
R1

Author
A1

Paper
P1

Review
R4

Review
R3

Paper
P2

Skeleton

Query is P(A1.good-writer)
Evidence is P1.accepted = T, P2.accepted = T

A1.Smart

P1.Quality

P1.Accepted

R1.Mood

R1.Length

R2.Mood

R2.Length P2.Quality

P2.Accepted

R3.Mood

R3.Length

R4.Mood

R4.Length

A1.Good Writer

PRM Inference: Constructed BN
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PRM Inference
Problems with this approach:

constructed BN may be very large
doesn’t exploit object structure 

Better approach:
reason about objects themselves
reason about whole classes of objects

In particular, exploit:
reuse of inference
encapsulation of objects

PRM Inference: Interfaces

A1.Smart

P1.Quality

P1.Accepted

R2.Mood

R2.Length

R1.Mood

R1.Length

A1.Good Writer

Variables pertaining
to R2: inputs and 
internal attributes
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PRM Inference: Interfaces

A1.Smart

P1.Quality

P1.Accepted

R2.Mood

R2.Length

R1.Mood

R1.Length

A1.Good Writer

Interface: 
imported and 
exported
attributes 

PRM Inference: Encapsulation

A1.Smart

P1.Quality

P1.Accepted

R1.Mood

R1.Length

R2.Mood

R2.Length P2.Quality

P2.Accepted

R3.Mood

R3.Length

R4.Mood

R4.Length

A1.Good Writer

R1 and R2 are
encapsulated
inside P1
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PRM Inference: Reuse

A1.Smart

P1.Quality

P1.Accepted

R1.Mood

R1.Length

R2.Mood

R2.Length P2.Quality

P2.Accepted

R3.Mood

R3.Length

R4.Mood

R4.Length

A1.Good Writer

A1.Smart

Structured Variable Elimination

Paper-1

Paper-2

Author 1

A1.Good Writer
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A1.Smart

Paper-1

Paper-2

Author 1

A1.Good Writer

Structured Variable Elimination

A1.Smart

P1.Quality

P1.Accepted

Review-2Review-1

Paper 1

A1.Good Writer

Structured Variable Elimination
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A1.Smart

Review-2Review-1

Paper 1

A1.Good Writer

P1.Accepted

P1.Quality

Structured Variable Elimination

R2.Mood

R2.Length

Review 2

A1.Good Writer

Structured Variable Elimination
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Review 2

A1.Good Writer

R2.Mood

Structured Variable Elimination

A1.Smart

Review-2Review-1

Paper 1

A1.Good Writer

P1.Accepted

P1.Quality

Structured Variable Elimination
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A1.Smart

Review-1

Paper 1

R2.Mood

A1.Good Writer

P1.Accepted

P1.Quality

Structured Variable Elimination

A1.Smart

Structured Variable Elimination

Review-1

Paper 1

R2.Mood

A1.Good Writer

P1.Accepted

P1.Quality
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A1.Smart

Paper 1

R2.MoodR1.Mood

A1.Good Writer

P1.Accepted

P1.Quality

Structured Variable Elimination

A1.Smart

Paper 1

R2.MoodR1.Mood

A1.Good Writer

P1.Accepted

P1.Quality

True

Structured Variable Elimination
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A1.Smart

Paper 1

A1.Good Writer

Structured Variable Elimination

A1.Smart

Paper-1

Paper-2

Author 1

A1.Good Writer

Structured Variable Elimination
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A1.Smart

Paper-2

Author 1

A1.Good Writer

Structured Variable Elimination

A1.Smart

Paper-2

Author 1

A1.Good Writer

Structured Variable Elimination
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A1.Smart

Author 1

A1.Good Writer

Structured Variable Elimination

Author 1

A1.Good Writer

Structured Variable Elimination
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Benefits of SVE
Structured inference leads to good elimination 
orderings for VE

interfaces are separators
• finding good separators for large BNs is very hard

therefore cheaper BN inference

Reuses computation wherever possible

Limitations of SVE
Does not work when encapsulation breaks down

But when we don’t have specific information about the 
connections between objects, we can assume that 
encapsulation holds

i.e., if we know P1 has two reviewers R1 and R2 but they are not
named instances, we assume R1 and R2 are encapsulated

Cannot reuse computation when different objects have different 
evidence

Reviewer
R2

Author
A1

Paper
P1

Reviewer
R4

Reviewer
R3Paper

P2

R3 is not
encapsulated
inside P2
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

• PRMs w/ Attribute Uncertainty
• Inference in PRMs
• Learning in PRMs

• PRMs w/ Structural Uncertainty

• PRMs w/ Class Hierarchies

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

Learning PRMs w/ AU
Database

Paper

Author

Review

Relational
Schema

Paper
Review

Author

• Parameter estimation
• Structure selection
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Paper
Quality

Accepted

Review
Mood
Length

MRQP

APMRQP

N
N

.,.

.,.,.θ∗  =

APMRQPN .,.,.where is the number of accepted, 
low quality papers 
whose reviewer was in a poor mood

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ
?
?
?
?

?
?
?
?

ML Parameter Estimation

Paper
Quality

Accepted

Review
Mood
Length

MRQP

APMRQP

N
N

.,.

.,.,.θ∗  =
,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ
?
?
?
?

?
?
?
?

Count

Query for counts:

Review
table

Paper
table

AcceptedP
MoodR

QualityP

.
.

.π

ML Parameter Estimation
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Structure Selection

Idea:
define scoring function 
do local search over legal structures

Key Components:
legal models 
scoring models
searching model space

Structure Selection

Idea:
define scoring function 
do local search over legal structures

Key Components:
» legal models

scoring models
searching model space
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Legal Models

author-of

PRM defines a coherent probability model over a 
skeleton σ if the dependencies between object 
attributes is acyclic

How do we guarantee that a PRM is acyclic 
for every skeleton?

Researcher
Prof. Gump

Reputation
high

Paper
P1

Accepted       
yes Paper

P2
Accepted       

yes
sum

Attribute Stratification
PRM

dependency 
structure S

dependency
graph

Paper.Accepted

Researcher.Reputation

if Researcher.Reputation
depends directly on Paper.Accepted

dependency graph acyclic ⇒ acyclic for any σ
Attribute stratification:

cycles along guaranteed acyclic relations
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Structure Selection

Idea: 
define scoring function 
do local search over legal structures

Key Components:
legal models

» scoring models – same as BN
searching model space

Structure Selection

Idea: 
define scoring function 
do local search over legal structures

Key Components:
legal models 
scoring models

» searching model space
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Searching Model Space

ReviewAuthor Paper

Δscore

Delete R.M→R.L ReviewAuthor Paper

ΔscoreAdd A.S→A.W

Author ReviewPaper

Phase 0: consider only dependencies within a class

U
)(.

.).(
RattributesedescriptivBR

BRARParentsPotential
−∈

=−

ReviewAuthor Paper
Δ scoreAdd A.S→P.A

Δ score

Add P.A→R.M
ReviewAuthor Paper

ReviewPaperAuthor

Phase 1: consider dependencies from “neighboring”
classes, via schema relations

Phased Structure Search

U
<> )(.

.).(
SRattributesedescriptivCS

CSARParentsPotential
−∈

=−
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Phased Structure Search

Δ scoreAdd A.S→R.M

Δ score

Add R.M→A.W

Review

Phase 2: consider dependencies from “further”
classes, via relation chains

Author Paper

ReviewAuthor Paper

ReviewAuthor Paper

U
<><> )(.

.).(
TSRattributesedescriptivDT

DTARParentsPotential
−∈

=−

Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

• PRMs w/ Attribute Uncertainty
• Inference in PRMs
• Learning in PRMs

• PRMs w/ Structural Uncertainty

• PRMs w/ Class Hierarchies

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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Reminder: PRM w/ AU Semantics

)).(|.(),,|( ,
.

AxparentsAxPP S
x Ax

σ
σ

σ ∏ ∏
∈

=ΘSI

AttributesObjects

probability distribution over completions I:

PRM relational skeleton σ+ =

Author

Paper

Review

Author
A1

Paper
P2

Paper
P1

Review
R3

Review
R2

Review
R1

Author
A2

Paper
P3

Kinds of structural uncertainty
How many objects does an object relate to?

how many Authors does Paper1 have?
Which object is an object related to?

does Paper1 cite Paper2 or Paper3?
Which class does an object belong to?

is Paper1 a JournalArticle or a ConferencePaper?
Does an object actually exist?
Are two objects identical?
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Structural Uncertainty
Motivation:  PRM with AU only well-defined when the 
skeleton structure is known
May be uncertain about relational structure itself
Construct probabilistic models of relational structure 
that capture structural uncertainty
Mechanisms:

Reference uncertainty
Existence uncertainty 
Number uncertainty
Type uncertainty
Identity uncertainty

Citation Relational Schema

Wrote

Paper
Topic
Word1

WordN
…

Word2

Paper
Topic
Word1

WordN
…

Word2Cites
Citing 
Paper

Cited 
Paper

Author
Institution
Research Area
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Attribute Uncertainty

Paper

Word1

Topic

WordN

Wrote

Author

...

Research Area

P( WordN | Topic)

P( Topic | 
Paper.Author.Research Area

Institution P( Institution | 
Research Area)

Reference Uncertainty

Bibliography

Scientific Paper

`1. -----
2. -----
3. -----

?
?
?

Document Collection
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PRM w/ Reference Uncertainty

Cites
Citing
Cited

Dependency model for foreign keys

Paper
Topic
Words

Paper
Topic
Words

Naïve Approach: multinomial over primary key
• noncompact
• limits ability to generalize 

Reference Uncertainty Example
Paper

P5
Topic     

AI

Paper
P4

Topic       
AI

Paper
P3

Topic       
AI

Paper
M2

Topic       
AI

Paper
P1

Topic       
Theory

Cites
Citing
Cited

Paper
P5

Topic     
AI

Paper
P3

Topic       
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory

Paper
P1

Topic       
Theory

Paper.Topic = AI Paper.Topic = Theory

C1

C2

C1 C2
3.0 7.0
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Paper
P5

Topic     
AI

Paper
P4

Topic       
AI

Paper
P3

Topic       
AI

Paper
M2

Topic       
AI

Paper
P1

Topic       
Theory

Cites
Citing
Cited

Paper
P5

Topic     
AI

Paper
P3

Topic       
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory

Paper
P6

Topic       
Theory

Paper.Topic = AI Paper.Topic = Theory

C1

C2

Paper
Topic
Words

C1 C2
1.0 9.0

Topic

99.0 01.0
Theory

AI

Reference Uncertainty Example

Introduce Selector RVs

Cites1.Cited

Cites1.Selector

P1.Topic

P2.Topic

P3.Topic

P4.Topic

P5.Topic

P6.Topic
Cites2.Cited

Cites2.Selector

Introduce Selector RV, whose domain is {C1,C2}
The distribution over Cited depends on all of the 
topics, and the selector
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PRMs w/ RU Semantics

PRM-RU + entity skeleton σ
⇒ probability distribution over full instantiations I

Cites
Cited
Citing

Paper

Topic
Words

Paper

Topic
Words

PRM RU

Paper
P5

Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

Paper
P5

Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

RegReg

RegRegCites

entity skeleton σ

Learning
Idea:

define scoring function 
do phased local search over legal structures

Key Components:
legal models

scoring models

searching model space

PRMs w/ RU

model new dependencies

new operators

unchanged
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Legal Models  

Cites

Citing
Cited

Mood

Paper

Important

Accepted

Review

Paper

Important

Accepted

Legal Models

P1.Accepted

When a node’s parent is defined using an uncertain 
relation, the reference RV must be a parent of the 
node as well.

Cites1.Cited

Cites1.Selector

R1.Mood

P2.Important

P3.Important

P4.Important
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Structure Search

Cites
Citing
Cited

Paper
Topic
Words

Paper
Topic
Words

Cited
Papers

1.0

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper

Author
Institution

Structure Search: New Operators

Cites
Citing
Cited

Paper
Topic
Words

Paper
Topic
Words

Cited

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper

Topic 

ΔscoreRefine on Topic

Paper
Paper

Paper
Paper

Paper

Paper
Paper

Paper
Paper

Paper

Author
Institution
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Structure Search: New Operators

Cites
Citing
Cited

Paper
Topic
Words

Paper
Topic
Words

Cited

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper
Paper

Paper

Topic 

Refine on Topic

Paper
Paper

Paper
Paper

Paper

Paper
Paper

Paper
Paper

Paper

Paper
Paper

Paper
Paper

Paper
PaperPaper

Paper

Δscore

Refine on Author.Instition

Author
Institution

Institution 

PRMs w/ RU Summary
Define semantics for uncertainty over which entities 
are related to each other
Search now includes operators Refine and 
Abstract for constructing foreign-key dependency 
model
Provides one simple mechanism for link uncertainty 

79



Existence Uncertainty

Document CollectionDocument Collection

? ?
?

Cites

Dependency model for existence of relationship

Paper
Topic
Words

Paper
Topic
Words

Exists

PRM w/ Exists Uncertainty
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Exists Uncertainty Example

Cites

Paper
Topic
Words

Paper
Topic
Words

Exists

Citer.Topic Cited.Topic

0.995 0005Theory Theory

False True

AITheory 0.999 0001

AIAI 0.993 0008
AI Theory 0.997 0003

Paper#2 Topic Paper#3Topic

WordN

Paper#1

Word1

Topic

... ... ...

Author #1
Area Inst

#1-#2

Author #2
Area Inst

Exists

#2-#3
Exists

#2-#1
Exists

#3-#1
Exists

#1-#3
Exists

WordN

Word1WordN

Word1

Exists

#3-#2

Introduce Exists RVs
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Paper#2 Topic Paper#3Topic

WordN

Paper#1

Word1

Topic

... ... ...

Author #1
Area Inst

#1-#2

Author #2
Area Inst

Exists

#2-#3
Exists

#2-#1
Exists

#3-#1
Exists

#1-#3
Exists

WordN

Word1WordN

Word1

Exists

WordNWord1
WordN

Word1WordN

Word1

ExistsExists Exists ExistsExists Exists

#3-#2

Introduce Exists RVs

PRMs w/ EU Semantics

PRM-EU + object skeleton σ
⇒ probability distribution over full instantiations I

Paper
P5

Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

Paper
P5

Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

object skeleton σ

???

PRM EU

Cites
Exists

Paper

Topic
Words

Paper

Topic
Words
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Idea:
define scoring function 
do phased local search over legal structures

Key Components:
legal models

scoring models

searching model space

PRMs w/ EU

model new dependencies

unchanged

unchanged

Learning

Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

• PRMs w/ Attribute Uncertainty
• Inference in PRMs
• Learning in PRMs

• PRMs w/ Structural Uncertainty

• PRMs w/ Class Hierarchies

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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PRMs with classes
Relations organized in a class hierarchy

Subclasses inherit their probability model from superclasses
Instances are a special case of subclasses of size 1
As you descend through the class hierarchy, you can have 
richer dependency models

e.g. cannot say Accepted(P1) <- Accepted(P2) (cyclic)
but can say Accepted(JournalP1) <- Accepted(ConfP2)

Venue

Journal Conference

Type Uncertainty
Is 1st-Venue a Journal or Conference ?
Create 1st-Journal and 1st-Conference objects
Introduce Type(1st-Venue) variable with possible 
values Journal and Conference
Make 1st-Venue equal to 1st-Journal or 1st-
Conference according to value of Type(1st-Venue)
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Learning PRM-CHs

Relational
Schema

Database: 

TVProgram Person

Vote

Person

Vote

TVProgram

Instance I

• Class hierarchy provided
• Learn class hierarchy

Learning
Idea:

define scoring function 
do phased local search over legal structures

Key Components:
legal models

scoring models

searching model space

model new dependencies

new operators

unchanged

PRMs w/ CH
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Journal
Topic
Quality
Accepted Conf-Paper

Topic
Quality
Accepted

Journal.Accepted

Conf-Paper.Accepted

Paper
Topic
Quality
Accepted

Paper.Accepted
Paper.Class

Guaranteeing Acyclicity w/ Subclasses

Learning PRM-CH
Scenario 1: Class hierarchy is provided 

New Operators
Specialize/Inherit

AcceptedPaper

AcceptedJournal AcceptedConference AcceptedWorkshopAcceptedWorkshop
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Learning Class Hierarchy
Issue: partially observable data set
Construct decision tree for class defined over 
attributes observed in training set

Paper.Venue

conference
workshop

class1 class3

journal 

class2

class4

high

Paper.Author.Fame

class5

medium

class6

low

New operator 
Split on class attribute
Related class attribute

PRMs w/ Class Hierarchies
Allow us to:

Refine a “heterogenous” class into more 
coherent subclasses
Refine probabilistic model along class 
hierarchy

Can specialize/inherit CPDs
Construct new dependencies that were 
originally “acyclic”

Provides bridge from class-based model 
to instance-based model
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Summary: Directed Frame-based 
Approaches

Focus on objects and relationships
what types of objects are there, and how are they 
related to each other?
how does a property of an object depend on other 
properties (of the same or other objects)?

Representation support
Attribute uncertainty 
Structural uncertainty
Class Hierarchies

Efficient Inference and Learning Algorithms

Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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Author3
Fame

nodes = domain variables
edges = mutual influence

Network structure encodes conditional independencies:
I(A1 Fame, A4 Fame | A2 Fame, A3 Fame) 

Author1
Fame

Author4
Fame

Author2
Fame 0.6

f2

f4

f2

0.3

1.5
0.3

f4f2

f4

f4

f2

F4F2 φ(F2,F4)

clique potential

parameters measure
compatibility of values

Markov Networks

Markov Network Semantics

)4,3()4,2()3,1()2,1(14321 34241312 ffffffff
Z

)f,,ff,P(f φφφφ=

conditional
independencies
in MN structure

+
local

clique
potentials

=
full joint

distribution
over domain

F1

F3 F4

F2

where Z is a normalizing factor that ensures that the
probabilities sum to 1

Good news: no acyclicity constraints
Bad news: global normalization (1/Z)
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

Advantages of Undirected Models

Symmetric, non-causal interactions
Web: categories of linked pages are correlated
Social nets: individual correlated with peers
Cannot introduce direct edges because

of cycles 

Patterns involving multiple entities
Web: “triangle” patterns
Social nets: transitive relations 
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Relational Markov Networks
Locality:

Local probabilistic dependencies given by relational links
Universals: 

Same dependencies hold for all objects linked in a particular pattern 

Author2 Paper2
TopicArea

Venue

Paper1
Topic

Author1

SubArea

Area

1.8

AI

TH

TH

0.3

1.5
0.2

AIAI

TH

AI

TH

T2T1 φ(T1,T2)

Template potential

RMNs
o Semantics

• Instantiated RMN MN
variables: attributes of all objects
dependencies: determined by links & RMN

Learning
Discriminative training
Max-margin Markov networks
Associative Markov networks

Collective classification:
Classifies multiple entities and links 
simultaneously
Exploits links & correlations between related 
entities
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Model 
Structure

Relational
Markov
NetworkVenue Author

Paper

Training Data

New Data

Learning

Inference

Conclusions

Collective Classification Overview

Train on one labeled conference/venue
Predict labels on a new conference given papers and links

Example:

Approx.

Approx.

Maximum Likelihood

o1.x, o1.y*
…

om.x, om.y*

D

f(x,y)

maximizew

log Pw(D.y*, D.x)

Estimation Classification

argmaxy
Pw(D’.y | D’.x)

We don’t care about the joint
distribution P(D.X=x, D.Y=y*)
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Maximum Conditional Likelihood

o1.x, o1.y*
…

om.x, om.y*

D

f(x,y)

maximizew

log Pw(D.y* | D.x)

Estimation Classification

argmaxy
Pw(D’.y | D’.x)

[Lafferty et al ’01]

Learning RMNs

)},(...),(exp{),( 212121 yyfwyyfwyy CCCCAAAA ⋅++⋅=φ

)f()f( )|(ww w
XDYDEXDYDXDYDP XDYDP .,..,.).|.(log ..−=∇

Student2 Reg2
GradeIntelligence

Course

Reg
Grade

Student

Difficulty

Intelligence

AA
AB
AC
BA
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Learning RMNs
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Four SRL Approaches
Directed Approaches

BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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Markov Logic Networks
[Richardson and Domingos 03,Singla & Domingos 05, Kok & 
Domingos 05]

A Markov Logic Network (MLN) is a set of pairs (F, w) where
F is a formula in first-order logic
w is a real number

Together with a finite set of constants,
it defines a Markov network with

One node for each grounding of each predicate in the MLN
One feature for each grounding of each formula F in the MLN, 
with the corresponding weight w

Example of an MLN
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Example of an MLN
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Suppose we have constants: alice, bob and p1
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Example of an MLN
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Markov Logic Networks

Combine first-order logic and Markov networks
Syntax: First-order logic + Weights
Semantics: Templates for Markov networks

Inference: KBMC + MaxWalkSat + MCMC
Learning: ILP + Pseudo-likelihood / discriminitive 
training

Summary: Undirected Approaches

Focus on symmetric, non-causal relationships
Like directed approaches, support collective 
classification
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Four SRL Approaches
Directed Approaches

Rule-based Directed Models
Frame-based Directed Models

Undirected Approaches
Frame-based Undirected Models
Rule-based Undirected Models

Themes: Representation
Basic representational elements and focus

rules: facts
frames: objects
programs: processes

Representing domain structure
context
relational skeleton
non-probabilistic language constructs

Representing local probabilities
noise factors
conditional probability tables
clique potentials
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Themes: Representational Issues
Structural uncertainty

reference, exists, type, number, identity
Combining probabilities from multiple sources

combining rules
aggregation

Cyclicity
ruling out (stratification)
introducing time
guaranteed acyclic relations
undirected models

Functions and infinite chains
iterative approximation

Themes: Inference
Inference on ground random variables

knowledge based model construction
Inference at the first-order object level

first-order variable elimination
• unification
• quantification over populations

structured variable elimination
memoization

Utilizing entity-relations structure
Query-directed inference

backward chaining on query and evidence
lazy evaluation
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Themes: Learning
Learning parameters

Parameter sharing
• rules apply many times
• same type of object appears many times
• same function is called many times

Expectation-Maximization
Learning structure

structure search 
legal models
scoring function
search operators

Goals
By the end of this tutorial, hopefully, you will be:

1. able to distinguish among different SRL tasks
2. able to represent a problem in one of several SRL 

representations
3. excited about SRL research problems and practical 

applications

Many other interesting topics that I didn’t have time 
to cover…
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Conclusion
Statistical Relational Learning 

Supports multi-relational, heterogeneous domains
Supports noisy, uncertain, non-IID data
aka, real-world data!

Differences in approaches:
rule-based vs. frame-based
directed vs. undirected

Many common issues:
Need for collective classification and consolidation
Need for aggregation and combining rules
Need to handle labeled and unlabeled data
Need to handle structural uncertainty
etc.

Great opportunity for combining rich logical representation 
and inference and learning with hierarchical statistical 
models!!
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