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® ® ® Roadmap

o SRL: What is it?

o SRL Tasks & Challenges

o 4 SRL Approaches

o Applications and Future directions

® e \\Vhy SRL?

o Traditional statistical machine learning approaches assume:
A random sample of homogeneous objects from single relation

o Traditional ILP/relational learning approaches assume:
No noise or uncertainty in data

o Real world data sets:
Multi-relational, heterogeneous and semi-structured
Noisy and uncertain

o Statistical Relational Learning:
newly emerging research area at the intersection of research in
social network and link analysis, hypertext and web mining, graph
mining, relational learning and inductive logic programming

o Sample Domains:

web data, bibliographic data, epidemiological data, communication
data, customer networks, collaborative filtering, trust networks,
biological data, natural language, vision




® ® & What is SRL?

o Three views...

®® % View 1: Alphabet Soup
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® ® © View 2: Representation Soup

o Hierarchical Bayesian Model + Relational

Representation
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® ® @ View 3: Data Soup

Training Data Test Data
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View 3: Data Soup
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® e % \iew 3: Data Soup

Training Data Test Data

®® % (Goals

o By the end of this tutorial, hopefully, you will be:
1. able to distinguish among different SRL tasks

2. able to represent a problem in one of several SRL
representations

3. excited about SRL research problems and practical
applications




® ® ® Roadmap

o SRL: What is it?

o SRL Tasks & Challenges

o 4 SRL Approaches

o Applications and Future directions

® @ & SRL Tasks

o Tasks
Object Classification
Object Type Prediction
Link Type Prediction
Predicting Link Existence
Link Cardinality Estimation
Entity Resolution
Group Detection
Subgraph Discovery
Metadata Mining




® ® @ Object Prediction

o Object Classification

Predicting the category of an object based on its
attributes and its links and attributes of linked objects
e.g., predicting the topic of a paper based on the words
used in the paper, the topics of papers it cites, the
research interests of the author

o Object Type Prediction

Predicting the type of an object based on its attributes and
its links and attributes of linked objects

e.g., predict the venue type of a publication (conference,
journal, workshop) based on properties of the paper

® ® @ | ink Prediction

o Link Classification

Predicting type or purpose of link based on properties of the
participating objects

e.g., predict whether a citation is to foundational work,
background material, gratuitous PC reference

o Predicting Link Existence
Predicting whether a link exists between two objects
e.g. predicting whether a paper will cite another paper

o Link Cardinality Estimation

Predicting the number of links to an object or predicting the
number of objects reached along a path from an object

e.g., predict the number of citations of a paper




® ® © More complex prediction tasks

o Group Detection

Predicting when a set of entities belong to the same group based
on clustering both object attribute values and link structure

e.g., identifying research communities

o Entity Resolution

Predicting when a collection of objects are the same, based on
their attributes and their links (aka: record linkage, identity
uncertainty)

e.g., predicting when two citations are referring to the same
paper.

o Predicate Invention
Induce a new general relation/link from existing links and paths

e.g., propose concept of advisor from co-author and financial
support

o Subgraph Identification, Metadata Mapping

® ® @ SRL Challenges

Collective Classification

Collective Consolidation

Logical vs. Statistical dependencies

Feature Construction — aggregation, selection
Flexible and Decomposable Combining Rules
Instances vs. Classes

Effective Use of Labeled & Unlabeled Data
Link Prediction

Closed vs. Open World

Challenges common to any SRL approachl!
Bayesian Logic Programs, Markov Logic Networks, Probabilistic Relational Models,
Relational Markov Networks, Relational Probability Trees, Stochastic Logic
Programming to name a few
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® ® ® Roadmap

o SRL: What is it?

o SRL Tasks & Challenges

o 4 SRL Approaches

o Applications and Future directions

® ® @ Four SRL Approaches

o Directed Approaches
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Frame-based Undirected Models

Rule-based Undirected Models

o Programming Language Approaches (oops, five!)

11




® ® © Emphasis in Different Approaches

o Rule-based approaches focus on facts
what is true in the world?
what facts do other facts depend on?
o Frame-based approaches focus on objects and relationships

what types of objects are there, and how are they related to each
other?

how does a property of an object depend on other properties (of
the same or other objects)?

o Directed approaches focus on causal interactions

o Undirected approaches focus on symmetric, non-causal
interactions
o Programming language approaches focus on processes
how is the world generated?
how does one event influence another event?

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Rule-based Undirected Models
Frame-based Undirected Models

12




® ¢ @ Bayesian Networks

w S|\P@IW, 5)\
w s| 0.6 0.4

w s| 0.3 0.7
w s| 0.4 0.6
w

3| 0.1 0.9 Y

nodes = domain variables
edges = direct causal influence

conditional probability table (CPT)
Good Write
Reviewer
Mood
R Accepted
Length

Network structure encodes conditional independencies:
/(Review-Length , Good-Writer | Reviewer-Mood)

® @ ©® BN Semantics

D SO N
conditional local full joint
> C@> independencies + CPTs — distribution
in BN structure over domain
L D

P(W,s,m,q,l,a) =
PW)P(s)P(m|w)P(q|w,s)P(I | m)P(a| mq)
o Compact & natural representation:

nodes <k parents = O(2n) vs. O(2") params
natural parameters
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® ® ® Reasoning in BNs

o Full joint distribution answers any query
P(event [ evidence)

o Allows combination of different types of reasoning:
Causal: P(Reviewer-Mood | Good-Writer)
Evidential: P(Reviewer-Mood [ not Accepted)
Intercausal: P(Reviewer-Mood | not Accepted,

Quality)
P SO

S

O W

® ® @ \/ariable Elimination

o Tocompute P(a)= ZP(W,S, m,q,l,a)

w,s,m,q,l

factors
) T
D P(w)P(s)P(m|w)P(q|w,s)P(l |m)P(a| m,q)

w,s,m(q,l 1

m_ood good writer
pissy false 1 A factor is a function from
pISSy true 0 | values of variables to
gooa false 0.7 e

ositive real numbers
good true 0.3 P
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® @ » \/ariable Elimination

o Tocompute P(a)= ZP(W s,m,q,l,a)

w,s,m,q,l

Z ZP(W)P(S)P(m |w)P(q |w,s)P(l | m)P(a| m,q)

w,sm,q |

® ® @ \/ariable Elimination

o Tocompute P(a)= ZP(W,S, m,q,l,a)

w,s,mq,l

2 PW)P(s)P(m|w)P(q |w,s)P(a|m CI)ZP(l |m)

w,s,m,q

sum out |
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® ® © Variable Elimination

o To compute P(a ZP w,s,m,q,l,a)

w,s,m,q,l

ZP(W (S)P(m|w)P(q|w, S)P(aImCI)fT( )
new factor

® ® @ \/ariable Elimination

o To compute P(a)= ZP(W,S, m,q,l,a)

w,s,m,q,l

2 P(s)P(al mq)i(m)> PwP(m|w)P(q|w,s)

s,;m(q

multiply factors together
then sum out w

16




® ® © Variable Elimination

o To compute P(a ZP w,s,m,q,l,a)

w,s,m,q,l

2 _P(s)P(al mq)f(m)f,(m, a s)

s,m(q
new factor

® ® @ \/ariable Elimination

o To compute P(a ZP (w,s,m,q,l,a)

w,s,m,q,l

P(a)
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® ® @ QOther Inference Algorithms

o Exact
Junction Tree [Lauritzen & Spiegelhalter 88]

Cutset Conditioning [Pearl 87]

o Approximate
Loopy Belief Propagation [McEliece et al 98]
Likelihood Weighting [Shwe & Cooper 91]

Markov Chain Monte Carlo [eg MacKay 98]
Gibbs Sampling [Geman & Geman 84]
Metropolis-Hastings [Metropolis et al 53, Hastings 70]

Variational Methods [Jordan et al 98]

® ® @ | earning BNs

Structure and

Parameters only Parameters

Complete Data Easy: counting Structure search

EM [Dempster et al 77]
Incomplete Data | or gradient descent
[Russell et al 95]

Structural EM
[Friedman 97]

See [Heckerman 98] for a general introduction

18



® @ ® BN Parameter Estimation

o Assume known dependency structure G

o Goal: estimate BN parameters 6
entries in local probability models,

0, =P(X =x|Pa[X]=u)
o @ is good if it's likely to generate observed data.

1(0:D,G) =log P(D|8,G)

o MLE Principle: Choose #* so as to maximize |
o Alternative: incorporate a prior

® ® @ | earning With Complete Data

o Fully observed data: data consists of set of
instances, each with a value for all BN variables

o With fully observed data, we can compute N g
= number of instances with g, W and s

and similarly for other counts

o We then estimate

qw,s

_ N
eq,vv,s :P(q |W!S): N

w,S
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® ® © Dealing w/ missing values

o Cantcompute N,
o But can use Expectation Maximization (EM)

Given parameter values, can compute expected
counts: E[N > P(g',w',s' |evidence')

instancesi

q,W,s] =

this requires BN inference
Given expected counts, estimate parameters:

E[Ng ]
E[Ng <
o Begin with arbitrary parameter values
o lIterate these two steps
o Converges to local maximum of likelihood

eq,vv,s = P(q |W,S) =

® ® © Structure search

o Begin with an empty network

o Consider all neighbors reached by a search operator
that are acyclic

add an edge
remove an edge
reverse an edge

o For each neighbor
compute ML parameter values (95*
compute score(s) = logP(D|s,6.)+logP(s)

o Choose the neighbor with the highest score
o Continue until reach a local maximum

20




® ® © Mini-BN Tutorial Summary

o Representation — probability distribution factored
according to the BN DAG

o Inference — exact + approximate
o Learning — parameters + structure

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

21




O O 0O O O 0O OO 0 0 O

Directed Rule-based Flavors

Goldman & Charniak [93]

Breese [92]

Probabilistic Horn Abduction [Poole 93]
Probabilistic Logic Programming [Ngo & Haddawy 96]
Relational Bayesian Networks [Jaeger 97]
Bayesian Logic Programs [Kersting & de Raedt 00]
Stochastic Logic Programs [Muggleton 96]

PRISM [Sato & Kameya 97]

CLP(BN) [Costa et al. 03]

Logical Bayesian Networks [Fierens et al 04, 05]
etc.

Intuitive Approach

In logic programming,

accepted(P) :- author(P,A), famous(A).

means

For all P,A if A is the author of P and A is famous, then P

is accepted

This is a categorical inference
But this may not be true in all cases

22




® ® ® Fudge Factors

Use
accepted(P) :- author(P,A), famous(A). (0.6)

This means

For all P,A if A is the author of P and A is famous, then P
is accepted with probability 0.6

But what does this mean when there are other
possible causes of a paper being accepted?

€.g. accepted(P) :- high_quality(P). (0.8)

® ® @ |ntuitive Meaning

accepted(P) :- author(P,A), famous(A). (0.6)
means

For all P,A if A is the author of P and A is famous, then P
is accepted with probability 0.6, provided no other
possible cause of the paper being accepted holds

If more than one possible cause holds, a combining
rule is needed to combine the probabilities

23




® ® © Meaning of Disjunction

In logic programming
accepted(P) :- author(P,A), famous(A).
accepted(P) :- high_quality(P).
means

For all P,A if A is the author of P and A is famous, or if P
is high quality, then P is accepted

® ® @ Probabilistic Disjunction

Now
accepted(P) :- author(P,A), famous(A). (0.6)
accepted(P) :- high_quality(P). (0.8)
means

For all P,A, if (A is the author of P and A is famous
successfully cause P to be accepted) or (P is high
quality successfully causes P to be accepted), then P
is accepted.

If A is the author of P and A is famous, they successfully
cause P to be accepted with probability 0.6.

If P is high quality, it successfully causes P to be
accepted with probability 0.8.

o All causes act independently to produce effect (causal independence)
o Leak probability: effect may happen with no cause
o e.g. accepted(P). (0.1)

24




® & © Computing Probabilities

o What is P(accepted(pl)) given that Alice is an
author and Alice is famous, and that the paper is
high quality, but no other possible cause is true?

P = P(atleast one true cause succeeds)
= 1-P(alltrue possible causes fail)

= 1- H(1' psuccess(i))

true possible causes i

-~ 1-(1-0.6)(1-0.8)(1-0.1)=0.928

leak

® @ © Combination Rules

o Other combination rules are possible
o e.g., max
P (effect) = o omax Peuccess (1)
rue possible causes i
o In our case,
P(accepted(pl)) = max {0.6,0.8,0.1} = 0.8
o Harder to interpret in terms of logic program

25




®e o KBMC

o Knowledge-Based Model Construction (KBMC)
[Wellman et al. 92, Ngo & Haddawy 95]

o Method for computing more complex probabilities
o Construct a Bayesian network, given a query Q
and evidence E

query and evidence are sets of ground atoms, i.e.,
predicates with no variable symbols
e.g. author(pl,alice)

o Construct network by searching for possible
proofs of the query and the variables

o Use standard BN inference techniques on
constructed network

® e o KBMC Example

smart(alice). (0.8)

smart(bob). (0.9)

author(p1l,alice). (0.7)

author(pl1,bob). (0.3)

high_quality(P) :- author(P,A), smart(A). (0.5)
high_quality(P). (0.1)

accepted(P) :- high_quality(P). (0.9)

Query is accepted(pl).
Evidence is smart(bob).

26




Backward Chaining

Start with evidence variable smart(bob)

smart(bob)

Backward Chaining

Rule for smart(bob) has no antecedents — stop

backward chaining

smart(bob)

27




® ® © Backward Chaining

Begin with query variable accepted(p1l)

smart(bob)

accepted(pl)

® ® © Backward Chaining
Rule for accepted(pl) has antecedent high_quality(p1)

add high_quality(p1) to network, and make parent of
accepted(pl)

smart(bob)

high_quality(p1)
accepted(pl)

28




® ® © Backward Chaining

All of accepted(pl)’s parents have been found —
create its conditional probability table (CPT)

smart(bob)

high_quality(p1)
accepted(pl)

high_quality(p1)| accepted(p1
hq 0.9 0.1
hq 0o 1

® ® © Backward Chaining

high_quality(pl) :- author(p1,A), smart(A) has two
groundings: A=alice and A=bob

smart(bob)

high_quality(p1)
accepted(pl)

29



® ® © Backward Chaining

For grounding A=alice, add author(pl,alice) and
smart(alice) to network, and make parents of

high_quality(p1)

smart(bob)

smart(alice)

author(pl,alice)

high_quality(p1)

accepted(pl)

® ® © Backward Chaining

For grounding A=bob, add author(p1,bob) to network.
smart(bob) is already in network. Make both
parents of high_quality(p1)

author(pl,alice)

high_quality(p1)

accepted(pl)

smart(bob)
author(p1,bob)

30




® ® © Backward Chaining

Create CPT for high_quality(p1) — make noisy-or

smart(alice)

smart(bob)
author(pl,alice) author(p1,bob)

high_quality(p1)
accepted(pl)

® ® © Backward Chaining

author(p1l,alice), smart(alice) and author(p1,bob)
have no antecedents — stop backward chaining

smart(alice)

smart(bob)
author(pl,alice) author(p1,bob)

high_quality(p1)
accepted(pl)

31




® ® © Backward Chaining

o assert evidence smart(bob) = true, and compute
P(accepted(pl) | smart(bob) = true)

true

smart(bob)
author(p1,bob)

smart(alice)
author(pl,alice)

high_quality(p1)

accepted(pl)

Backward Chaining on Both
Query and Evidence

o Necessary, if query and evidence have common

ancestor
p 1

<

o Sufficient. P(Query | Evidence) can be computed
using only ancestors of query and evidence
nodes

unobserved descendants are irrelevant

32




® ® ® The Role of Context

o Context is deterministic knowledge known prior to
the network being constructed

May be defined by its own logic program
Is not a random variable in the BN
o Used to determine structure of the constructed BN

If a context predicate P appears in the body of a rule
R, only backward chain on R if P is true

® ® @ Context example

Suppose author(P,A) is a context predicate,
author(pl,bob) is true, and author(pl,alice) cannot
be proven from deterministic KB (and is therefore
false by assumption)

Network is

@ No author(p1,bob) node

because it is a context predicate

v

@@ No smart(alice) node
because author(pl,alice) is false

33




® ® © Semantics

o Assumption: no cycles in resulting BN
If there are cycles, cannot interpret BN as definition
of joint probability distribution
o Assuming BN construction process terminates,
conditional probability of any query given any
evidence is defined by the BN.
o Somewhat unsatisfying because

meaning of program is query dependent (depends
on constructed BN)

meaning is not stated declaratively in terms of
program but in terms of constructed network
instead

® ® ® Disadvantages of Approach

o Up until now, ground logical atoms have been
random variables ranging over T,F

cumbersome to have a different random variable
for lead_author(pl,alice), lead_author(pl,bob)
and all possible values of lead _author(pl1,A)

worse, since lead_author(pl,alice) and
lead_author(pl,bob) are different random
variables, it is possible for both to be true at the
same time

34




e o » Bayesian Logic Programs
[Kersting and de Raedt]

o Now, ground atoms are random variables with
any range (not necessarily Boolean)

now quality is a random variable, with values
high, medium, low

o Any probabilistic relationship is allowed
expressed in CPT

o Semantics of program given once and for all
not query dependent

® ® © Meaning of Rules in BLPs

accepted(P) :- quality(P).
means

“For all P, if quality(P) is a random variable, then
accepted(P) is a random variable”

Associated with this rule is a conditional probability
table (CPT) that specifies the probability distribution
over accepted(P) for any possible value of

quality(P)

35




® @ © Combining Rules for BLPs

accepted(P) :- quality(P).
accepted(P) :- author(P,A), fame(A).

o Before, combining rules combined individual
probabilities with each other

noisy-or and max rules easy to interpret
o Now, combining rules combine entire CPTs

® ® ©® Semantics of BLPs

o Random variables are all ground atoms that have
finite proofs in logic programs
assumes acyclicity
assumes no function symbols
o Can construct BN over all random variables
parents derived from rules
CPTs derived using combining rules

o Semantics of BLP: joint probability distribution over
all random variables

does not depend on query
o Inference in BLP by KBMC

36




An Issue

How to specify uncertainty over single-valued relations?

Approach 1: make lead_author(P) a random variable taking
values bob, alice etc.

we can’t say accepted(P) :- lead_author(P), famous(A)
because A does not appear in the rule head or in a
previous term in the body

Approach 2: make lead _author(P,A) a random variable with
values true, false

we run into the same problems as with the intuitive
approach (may have zero or many lead authors)

Approach 3: make lead_author a function
say accepted(P) :- famous(lead_author(P))

need to specify how to deal with function symbols and
uncertainty over them

First-Order Variable Elimination

o [Poole 03, Braz et al 05]
o Generalization of variable elimination to first

order domains

o Reasons directly about first-order variables,

instead of at the ground level

o Assumes that the size of the population for each

type of entity is known

37




® ® @ | earning Rule Parameters

o [Koller & Pfeffer 97, Sato & Kameya 01]

o Problem definition:
Given a skeleton rule base consisting of rules
without uncertainty parameters

and a set of instances, each with
a set of context predicates
observations about some random variables

Goal: learn parameter values for the rules that
maximize the likelihood of the data

® ® © Basic Approach

1. Construct a network BN' for each instance i using
KBMC, backward chaining on all the observed
variables

2. Expectation Maximization (EM)
exploit parameter sharing

38




® ® © Parameter Sharing
o In BNs, all random variables have distinct CPTs
only share parameters between different
instances, not different random variables
o In logical approaches, an instance may contain
many objects of the same kind
multiple papers, multiple authors, multiple citations
o Parameters are shared within instances
same parameters used across different papers,
authors, citations
o Parameter sharing allows faster learning, and
learning from a single instance
® ® ® Rule Parameters & CPT Entries
o In principle, combining rules produce complicated

relationship between model parameters and CPT
entries

o With a decomposable combining rule, each node

is derived from a single rule

Most natural combining rules are decomposable
e.g. noisy-or decomposes into set of ands followed by or

39




® ® © Parameters and Counts

o Each time a node is derived from a rule r, it provides
one experiment to learn about the parameters
associated with r

o Each such node should therefore make a separate
contribution to the count for those parameters

o 9;,u: the parameter associated with
P(X=x|Parents[X]=u) when rule r applies

o N)r( i the number of times a node has value x and its
parents have value u when rule r applies

® e ¢ EM With Parameter Sharing

o Given parameter values, compute expected

counts:
EIN;,J= D Y P(X=x,Parents[X]=u|evidence')
instancesi X

where the inner sum is over all nodes derived
from rule r in BN!

o Given expected counts, estimate:
el’ — E[N)r(,u]
X,u
E[N,]

o lIterate these two steps

40




® ® @ | earning Rule Structure

o [Kersting and De Raedt 02]
o Problem definition:

Given a set of instances, each with
context predicates
observations about some random variables

Goal: learn

a skeleton rule base consisting of rules and parameter
values for the rules

o Generalizes BN structure learning
define legal models
scoring function same as for BN
define search operators

® ® @ | egal Models

o Hypothesis space consists of all rule sets using
given predicates, together with parameter values
o A legal hypothesis:

is logically valid: rule set does not draw false
conclusions for any data cases

the constructed BN is acyclic for every instance

41




® ® © Search operators

o Add a constant-free atom to the body of a single
clause

o Remove a constant-free atom from the body of a
single clause

accepted(P) :- author(P,A).
accepted(P) :- quality(P).

de|‘et7 add
accepted(P).
accepted(P) :- quality(P).

accepted(P) :- author(P,A), famous(A).
accepted(P) :- quality(P).

Summary: Directed Rule-based
Approaches

o Provide an intuitive way to describe how one fact
depends on other facts

o Incorporate relationships between entities

o Generalizes to many different situations

Constructed BN for a domain depends on which
objects exist and what the known relationships are
between them (context)

o Inference at the ground level via KBMC
or lifted inference via FOVE
o Both parameters and structure are learnable
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® ® © Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

® ® ® Frame-based Approaches

o Probabilistic Relational Models (PRMs)

Representation & Inference [Koller & Pfeffer 98,
Pfeffer, Koller, Milch &Takusagawa 99, Pfeffer 00]

Learning [Friedman et al. 99, Getoor, Friedman,
Koller & Taskar 01 & 02, Getoor 01]

o Probabilistic Entity Relation Models (PERs)
Representation [Heckerman, Meek & Koller 04]
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® ® © Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models
* PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

* PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

® ® ® Relational Schema

Author Review

Good Writer Mood

Smart Length
: —
= -
= Paper =

‘lllllll Quality llllllb‘
Accepted Has Review

Author of

o Describes the types of objects and relations in the
database
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® ® © Probabilistic Relational Model

Review
Good Writer

Author

.III

® ® © Probabilistic Relational Model

Review

Author

e\ 7

( Paper.Accepted | w
| o |

P Paper.Quality, | ‘
\ Paper.Review.Mood )

45




® ® © Probabilistic Relati

Author @

N

onal Model

Review

oM
f 1
1
tf

kt,t

® ® © Relational Skeleton

Paper P1 Primary Keys
¢] Author: Al |e,
o Review: R1 | ‘e,
Author Al : *d Review R1

*
‘e Paper P2

Author A2 Review: R2
*
’0

*e, | Paper P3
4 Author: A2 W&
Review: R2

Fixed relational skeleton o:
set of objects in each class
relations between them

*l Author: Al |vea,,, {

Review R2

‘_,+ Review R2
-

Foreign Keys
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PRM w/ Attribute

Author Al

\J
g
\J
\g

Good Writer

Paper P1
Author: Al
Review: R1

Paper P2
Author: A1

Paper P3
Author: A2
Review: R2

Uncertainty

Review R1

Review R2

<Mood>
CLength>

Review R3

<Moo

Cength>

PRM defines distribution over instantiations of attributes

A Portion of the BN

PAIQ M)

0.1 0.9

P3.Accepted

02 08
06 04
0.7 03
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® e & A Portion of the BN

(oM [P(A QM)
f,f1 01 09
f.t | 0.2 0.8
t,f | 0.6 04
t,t | 0.7 0.3

P3.Accepted

® ¢ © PRM: Aggregate Dependencies

Review

Paper

Accepted
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® ¢ © PRM: Aggregate Dependencies

Paper Review

P(A | Q, M)

Review R1

t.f | 06 0.4 Review R2
- : : A e

Paper P1

CQuality )

sum, min, max,
avg, mode, count

® e © PRM with AU Semantics

Author

Review
Paper Q . R1
: v LI U=

. Review
....... R S o R2
view A2 P
—~ ]\é E) —v; ‘ "Review
..0 R R3
'»‘( Paper |4*
P3
PRM + relational skeletonc =

probability distribution over completions I:

P(lo,5,0)=]][] P(x.Alparents ¢, (x.A))

Xeo X.A

7 -
Objects Attributes
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® ® © Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models
* PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

* PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

® ® © PRM Inference

o Simple idea: enumerate all attributes of all objects
o Construct a Bayesian network over all the attributes
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® ® @ Inference Example

S
o Review
.
Skeleton RL
Paper | 4ase®*"" " —
% Y
““‘ P1 '.--...... .

*ea, JReview

. R2
Author | e** ——
Al *e,, —

‘e, Review
‘e an®
. JUPTTY R3
----- ——

- '..... p N

"ve,, JReview
R4
—

Query is P(Al.good-writer)
Evidence is Pl.accepted =T, P2.accepted =T

® ® © PRM Inference: Constructed BN

R3.Length

P2.Accepted)
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® ® © PRM Inference

o Problems with this approach:
constructed BN may be very large
doesn’t exploit object structure

o Better approach:
reason about objects themselves
reason about whole classes of objects

o In particular, exploit:
reuse of inference
encapsulation of objects

® ® © PRM Inference: Interfaces

Variables pertaining
to R2: inputs and
internal attributes

41.Good Writep
R1.Mood R2.Mood

CR2.Length >

1. Accepte
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® ® ©“ PRM Inference: Interfaces

Interface:
imported and
exported
attributes

471.Good Writep

® ® © PRM Inference:.Encapsulation

@ R1 and R2 are
encapsulated

1. Good Write inside P1
ﬂ .Qualit
R1.Mood R2.Mood
R1.Length R2.Length ) P2.Qualit

e
-

%Maad R4.Mood
R3.Length 1 R4.Length

P2.Accepted)
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PRM Inference: Reuse

R4.Mood

&
S
g
>

R4.Length
P2 Acceptedd

Structured Variable Elimination

Author 1
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Structured Variable Elimination

Author 1

41.Good Writep

Review-1

o

Review-2




® ® © Structured Variable Elimination
Paper 1
Review-1 Review-2
® ® » Structured Variable Elimination

Review 2

41.Good Write
R2.Mood
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Structured Variable Elimination

Review 2

41.Good Write
R2 Mood

Structured Variable Elimination
Paper 1

Review-1 Review-2




® @ © Structured Variable Elimination
Paper 1

Review-1

® @ © Structured Variable Elimination

Review-1




® @ © Structured Variable Elimination
Paper 1
® @ » Structured Variable Elimination




® @ © Structured Variable Elimination
Paper 1

41.Good Write

® @ © Structured Variable Elimination

Author 1

41.Good Write
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® ® © Structured Variable Elimination
Author 1
Paper-2
® ® » Structured Variable Elimination

Author 1

41.Good Write

Paper-2
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® ® © Structured Variable Elimination
Author 1
® ® » Structured Variable Elimination

Author 1

41.Good Write
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® @ © Benefits of SVE

o Structured inference leads to good elimination
orderings for VE

interfaces are separators
finding good separators for large BNs is very hard

therefore cheaper BN inference
o Reuses computation wherever possible

® ® © | imitations of SVE

o Does not work when encapsulation breaks down

Paper guuuumus® ReViegzer

Author '. ﬂ'h.,.. [:— R3 is not

= T "_':_.,IReviewer encapsulated
Rt e T 2 ) |inside P2

. Reviewer
R4

o But when we don’t have specific information about the
connections between objects, we can assume that
encapsulation holds

i.e., if we know P1 has two reviewers R1 and R2 but they are not
named instances, we assume R1 and R2 are encapsulated

o Cannot reuse computation when different objects have different
evidence
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® ® © Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models
* PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

* PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

®® ¢ | earning PRMs w/ AU

Author
Database JunnEs
Paper. ?

Author Pm
-

Review

lll-/‘

= )
. )
Paper
[a>) Review . .
— -0-8 « Parameter estimation
» Structure selection
Relational
Schema
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Review

ML Parameter Estimation

Mood Paper QM |P(A|Q, I\m
Length = Quality ff 2 2
"Tammnmn ACCGpte r) ?
» 7 ?
? 7
0% = NP.@,R.M,P.A ~/
NP.(S,R.M /
where Np_a,R.M,P.A is the number of accepted,

low quality papers

whose reviewer was in a poor mood

® ® ® L Parameter Estimation
Review
Mood
Paper M |P(A]Q, W
Length\ =+ Quality Qf f ? 07
"Tammmnn ACCEpte ,) ,?
» ? ?
?
0* = Ne g it p.a | ~
NP Q.R.M
Query for counts:
Review Paper
Count [TC P.Quality [ table D 4 table ] ]
R.Mood
P.Accepted
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® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
legal models
scoring models
searching model space

® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
» legal models
scoring models
searching model space
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® ® @ | egal Models

o PRM defines a coherent probability model over a
skeleton o if the dependencies between object
attributes is acyclic

author-of

Researcher | __..eset®
Prof. GUMp |, aase==""" {Paper
Reputation | 8 eeeesnced,,,, . 0 P2

high - ant
190~ Accepted

=

How do we guarantee that a PRM is acyclic
for every skeleton?

® ® & Attribute Stratification

PRM dependenc
dependency l][]l:> P y

structure S graph
CPaper.Accepted D
1 if Researcher.Reputation

depends directly on Paper.Accepted

@esearcher.ReputatioD

Attribute stratification:
dependency graph acyclic = acyclic for any o

cycles along guaranteed acyclic relations
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® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components
legal models
» scoring models — same as BN
searching model space

® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
legal models
scoring models
searching model space
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® ® © Searching Model Space

Phase 0: consider only dependencies within a class

'A”

000

Author Paper Review
- <
< gtS\ > - ) ¢
Mdbsc"‘e

| 1 T
Potential-Parents(R.A) = RB

R.Bedescriptive—attributes (R )

Paper Review
S
3K

>

Ny

Q
v S
\v4

>
S
Ny
Q
v S

® ® ® Phased Structure Search

Phase 1: consider dependencies from “neighboring”
classes, via schema relatiQns,

5/79.%
bl | EmEmg P\ddp‘ e
H B e il e

| |
Paper : Review
A
L

lAuthor I .
== Potential-Parents(R.A) = LJsc
L S.Cedescriptive-attributes (R><S)
400,104
. EEEERg
4 SOO/- \Q/h : —
Q Paper a |Review




® ® ©® Phgsed Structure Search

Phase 2: consider dependencies from “further”
classes, via relation chains

| |
Author 1™ | |

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models
* PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

* PRMs w/ Structural Uncertainty

* PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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Reminder: PRM w/ AU Semantics

Author

Paper

: Al Paper W -
: ...'. P1 Review
....... i Author o** R2
A2

Review W" *
v Review
? e, o’ RS
o JPaper |4+
P3

PRM + relational skeletonc =

probability distribution over completions I:

P(lc,5.@)=]][] P(x.Alparents g, (x.A))

Xeo X.A

4 -
Objects Attributes

Kinds of structural uncertainty

o How many objects does an object relate to?

how many Authors does Paperl have?

o Which object is an object related to?

does Paperl cite Paper2 or Paper3?

o Which class does an object belong to?

is Paperl a JournalArticle or a ConferencePaper?

o Does an object actually exist?
o Are two objects identical?
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® ® @ Structural Uncertainty

o Motivation: PRM with AU only well-defined when the
skeleton structure is known
o May be uncertain about relational structure itself

o Construct probabilistic models of relational structure
that capture structural uncertainty

o Mechanisms:

Reference uncertainty
Existence uncertainty
Number uncertainty
Type uncertainty
Identity uncertainty

® @ © Citation Relational Schema

Research Area

Author
Institution

]
| |
| |
|}
| |
| |
| |
"

L]
= Wrote
L]

Paper
Topic

Word1
Word2

WordN

Cites ‘
| | | |
Cited

Paper
Topic

Word1
Word?2

WordN




® @ © Attribute Uncertainty

Author

P( Institution |
Research Area)
WrOte\ E | P( Topic |
Paper.Author.Research Area
Paper i
P(WordN | Topic)

o0

Reference Uncertainty

[ (—
_ Biinography/é, S—
— 2, = —
— 3. “";‘% — —

Scientific Paper

T/
2l

Document Collection
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® & © PRM w/ Reference Uncertainty

Paper ...E .f ..... Paper

Topic : : : _

Woprds : Cites : Topic
==«p- Citing Words

Cited "ﬁj

Dependency model for foreign keys

Naive Approach: multinomial over primary key
* noncompact
« limits ability to generalize

® ® @ Reference Uncertainty Example

..........................
.

: P2 Topic
: | Topic Paper

¢ | Theod p1

S
: Theol

Y
ry
: C2:
%, Paper.Topic = Theory #

Cites cClL C2
Citing J 03 07 \
Cited e

:-,Paper.Topic = Al
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® ® @ Reference Uncertainty Example

Paper
E s
) Topic
: | Topic (Paper

: \ Theor] pg

E
: Theol

: ~ c2
'-...Paper.Topic = Theory..,-'
Paper
Topic : _
Woprds\ Cites TThO|O|c Cl C2
| ¢ting eory | 0.1 09
> Cited Al 1099001

® ® © |Introduce Selector RVs

Cite

Introduce Selector RV, whose domain is {C1,C2}
The distribution over Cited depends on all of the
topics, and the selector
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Paper 1+: | Paper
TopicN| 2 | gjges | i.{ Topic

® e & PRMs w/ RU Semantics
Words \i--Cited,O'{: Words

S Cltln‘g‘D i iiic[es

PRM RU entity skeleton ¢

PRM-RU + entity skeleton o
= probability distribution over full instantiations |

®® % | earning PRMs w/ RU

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:
legal models
model new dependencies

scoring models

unchanged
searching model space

new operators
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® ® @ | egal Models

Review

Paper

. Paper

P [ores ]

===}= Citing
Clted -

® ® @ | egal Models

Citesl1.Selector

P2.Important

P3.Important
1.Accepte P4.Important

When a node’s parent is defined using an uncertain
relation, the reference RV must be a parent of the
node as well.
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® ® © Structure Search

Paper pu a Paper
Topic | & | Cites |a | Topic [=
Words | " Citing |* | words | = Autho‘r
Cited d= Institution
Cited
Papers -
1.0

Structure Search: New Operators

Paper fs, «{ Paper
Topic = | Cites |2 | Topic [™
words | ®sp Citing |* | words |= Autho_r
Cited 4= Institution
Cited

- -
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® ® © Structure Search: New Operators

Paper pw, *v Paper

Topic | & | Cites |a | Topic [=
Words | " Citing |* | words | = AL/Z"hOII'
Cited 4= Institution

Cited

Paper

® o ¢ PRMs w/ RU Summary

o Define semantics for uncertainty over which entities
are related to each other

o Search now includes operators Refine and
Abstract for constructing foreign-key dependency
model

o Provides one simple mechanism for link uncertainty
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® ® @ Existence Uncertainty

Document Collection Document Collection

® & © PRM w/ Exists Uncertainty

Paper e+ Paper
Topic : - i | Topic
Words P Cites :

. ~ | Words
Exuns<<g::j

Dependency model for existence of relationship
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Paper

Words

® ® @ Exists Uncertainty Example

: vt Paper
Topic —] Cites  —+ Topic
\ - ,// Words
— EXists <
/N
\

Citer.Topic  Cited.Topic False
Theory Theory 0.995
Theory Al 0.999

Al Theory 0.997
Al Al 0.993

#1-#3

#1-#2 #2-#1

#3-#1

® ® ©® |ntroduce Exists RVs

#2-#3 H3-#2
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® ® © |ntroduce Exists RVs

#1-#3 #1-#2 #2-#1 #3-#1 #2-#3 #3-#2

® e % PRMs w/ EU Semantics

Paper bl " Paper

. -
Topic} = | cjtes | =] Topic
words [\

orads L Exist Words

PRM EU object skeleton o

PRM-EU + object skeleton o
= probability distribution over full instantiations I
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® ® ¢ | earning PRMs w/ EU

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:
legal models

model new dependencies
scoring models

unchanged
searching model space

unchanged

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models
* PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

* PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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® ® ® PRMs with classes

o Relations organized in a class hierarchy
Venue

Journal Conference

o Subclasses inherit their probability model from superclasses
o Instances are a special case of subclasses of size 1

o As you descend through the class hierarchy, you can have
richer dependency models
e.g. cannot say Accepted(P1) <- Accepted(P2) (cyclic)
but can say Accepted(JournalP1) <- Accepted(ConfP2)

® ® © Type Uncertainty

o Is 1s-Venue a Journal or Conference ?
o Create 1s--Journal and 1st-Conference objects

o Introduce Type(1st-Venue) variable with possible
values Journal and Conference

o Make 1%-Venue equal to 15-Journal or 18-
Conference according to value of Type(1s-Venue)
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®® ¢ [ earning PRM-CHs

o

TVProgra
Database:
Instance I Oo
f—

Vote ..

(—
ﬁ.. O [ A RN] IE
Verogram —i » Class hierarchy provided
f— —)
= | Relational | * Learn class hierarchy
< | Schema ==

®® © | earning PRMs w/ CH

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:

legal models
model new dependencies

scoring models
unchanged

searching model space
new operators
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® ® © Guaranteeing Acyclicity w/ Subclasses

Journal
Paper Topic
Topic Quality

Qualjty— Accepted ~ Conf-Paper
Accepid) Topic
Quality

> Accepted

Gaper.AcceptaN Journal.Accepteg
S

v
@—Paper.Accepte D

Paper.Class

®® ¢ | earning PRM-CH

o Scenario 1: Class hierarchy is provided

o New Operators
Specialize/Inherit

— I /]

AcceptedJourna/ Acceptedc‘anference AcceptedWOkahop
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® ® @ | earning Class Hierarchy

o Issue: partially observable data set
o Construct decision tree for class defined over
attributes observed in training set

o New operator
Split on class attribute
Related class attribute

Paper.Venue

journal 'f ~ workshop
con erence ~

class1 class3
Paper. Author Fame

hlg/ lmedlum N‘W

class4 classb class6

® ® © PRMs w/ Class Hierarchies

Allow us to:

o Refine a “heterogenous” class into more
coherent subclasses

o Refine probabilistic model along class
hierarchy
Can specialize/inherit CPDs
Construct new dependencies that were
originally “acyclic”
Provides bridge from class-based model
to instance-based model
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e o » Summary: Directed Frame-based
Approaches

o Focus on objects and relationships

what types of objects are there, and how are they
related to each other?

how does a property of an object depend on other
properties (of the same or other objects)?

o Representation support
Attribute uncertainty
Structural uncertainty
Class Hierarchies

o Efficient Inference and Learning Algorithms

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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® ® © Markov Networks

Authorl Author?
Fame Fame
r
Author3 Author4
Fame Fame z M4 0.3

2 ™ 1.5
nodes = domain variables /

edges = mutual influence parameters measure
compatibility of values

clique potential

F2 F4 | g(F2, F4)\
2 4| 06

2 4 0.3

Network structure encodes conditional independencies:
(A1 Fame, A4 Fame | A2 Fame, A3 Fame)

® ® © Markov Network Semantics

CED=—CESD .
conditional local full joint
ED=CED independencies +  clique =  distribution
in MN structure potentials over domain

P(fl,f2,f3,f4):%¢12(fl, f2)¢,(T1, 13)g,, (T2, T4)p,, (3, T4)

where Z is a normalizing factor that ensures that the
probabilities sum to 1

Good news: no acyclicity constraints
Bad news: global normalization (1/2)
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® ® © Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models

® & © Advantages of Undirected Models

o Symmetric, non-causal interactions
Web: categories of linked pages are correlated
Social nets: individual correlated with peers
Cannot introduce direct edges because ...

of cycles

o Patterns involving multiple entities k
Web: “triangle” patterns S——_
Social nets: transitive relations
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® ® © Relational Markov Networks

o Locality:
Local probabilistic dependencies given by relational links

o Universals:
Same dependencies hold for all objects linked in a particular pattern

Template potential

Authorl . NPaper1 \
Area Topic 7172 | ¢(T1,72)
2 Al Al 1.8

Venue
SubAre

Al TH 0.3

IIIIIII.

u TH Al 0.2

Author2 Paper2 TH TH 15
Area /

®® % RMNs

o Semantics
Instantiated RMN = MN
= variables: attributes of all objects
= dependencies: determined by links & RMN
o Learning
Discriminative training
Max-margin Markov networks
Associative Markov networks

o Collective classification:

Classifies multiple entities and links
simultaneously

Exploits links & correlations between related
entities
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® ® © (Collective Classification Overview

Training Data Relational
Markov
@ =T AE
] .
Appro_x. X e |/
Learning —
-/J—_-]Model
Structure @
@ Conclusions
New Data Approx.
Inference

Example:

o Train on one labeled conference/venue
o Predict labels on a new conference given papers and links

® ® % Maximum Likelihood

Estimation Classification
maXimizeW argmaxy
£(x,y) log P, (D.y*, D.x) P,(D.y | D'.x)

We don’t care about the joint
distribution P(D.X=x, D.Y=y%*)
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® ® © Maximum Conditional Likelihood

Estimation Classification
maximize,,, argmax,
f(X,y) log P,,(D.y* | D.X) P,(D.y | D'.X)

[Lafferty et al '01]

® ® @ | earning RMNs

Template potential ¢

Intelligence —F——Grade @) ‘ —— \
L
....... - Eg, -
b N\ | |
Difficulty @ ' wssssss a BA | AN
: AC 7%
AA I —
Intelligence—**=Grade N\

¢(y1’ yz) - eXp{WAA ’ fAA(yl’ yz) +ot Wee - 1Ecc: (yl’ yz)}
logP,(D.Y | D.X)=w-f(D.Y,D.X)—logZ(D.X)

V,,10gP, (DY | D.X) =f(DY,D.X)~E; 5vipxf(DY,D.X)
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® ® @ | earning RMNs

Maximize L = log P( / )

<T¢(Regl.Grade,Reg2.Grade)
CC |

-l=

AC |

easy / hard ABC low / high

A 1 —
Intelligence L 0 05 1 15
Intelligence
oL
P Z fAA(gligZ)_
OWaa 91,9,€D

2 f4a(9:,9,)P (9, 9, | D.Difficulty)

01,9,€D

® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models
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® ® © Markov Logic Networks

o [Richardson and Domingos 03,Singla & Domingos 05, Kok &
Domingos 05]

o A Markov Logic Network (MLN) is a set of pairs (F, w) where
F is a formula in first-order logic
w is a real number

o Together with a finite set of constants,
it defines a Markov network with
One node for each grounding of each predicate in the MLN

One feature for each grounding of each formula F in the MLN,
with the corresponding weight w

® ® @ Example of an MLN

15 | Vxauthor(x, p) Asmart(x) = high _quality(p)

1.1 || Yxhigh_quality(p) = accepted(p)

1.2 || Vx,yco_author(x,y) = (smart(x) < smart(y))

e VX, y Ap author (X, p) A author(y, p) = co _ author(X, y)
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® ® © Example of an MLN

15 | Vxauthor(x, p) A smart(x) = high _quality(p)

1.1 || Yxhigh_quality(p) = accepted(p)

1.2 | ¥x,yco_author(x,y) = (smart(x) < smart(y))

0 VX, y 3p author (x, p) A author(y, p) = co _author(x, y)

Suppose we have constants: alice, bob and pl

® ® @ Example of an MLN

15 | Vxauthor(x, p) Asmart(x) = high _quality(p)

1.1 || Yxhigh_quality(p) = accepted(p)

1.2 || Vx,yco_author(x,y) = (smart(x) < smart(y))

e VX, y Ap author (X, p) A author(y, p) = co _ author(X, y)

Suppose we have constants: alice, bob and pl

co_author(bob,alice) co_author(alice,bob)
co_author(alice,alice) co_author(bob,bob)

smart(bob)

author(pl,alice)

author(p1,bob)

high_quality(p1)

accepted(pl)
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® ® © Example of an MLN

15 | Vxauthor(x, p) A smart(x) = high _quality(p)

1.1 || Yxhigh_quality(p) = accepted(p)

1.2 | ¥x,yco_author(x,y) = (smart(x) < smart(y))

0 VX, y 3p author (x, p) A author(y, p) = co _author(x, y)

Suppose we have constants: alice, bob and pl

co_author(bob,alice) co_author(alice,bob)
co_author(alice,alice) co_author(bob,bob)

smart(alice)

high_quality(p1)
accepted(pl)

smart(bob)

author(p1,bob)

author(pl,alice)

® ® @ Example of an MLN

15 | Vxauthor(x, p) Asmart(x) = high _quality(p)

1.1 || Yxhigh_quality(p) = accepted(p)

1.2 || Vx,yco_author(x,y) = (smart(x) < smart(y))

e VX, y Ap author (X, p) A author(y, p) = co _ author(X, y)

Suppose we have constants: alice, bob and pl

co_author(bob,alice) co_author(alice,bob)
co_author(alice,alice) ' co_author(bob,bob)

smart(bob)
author(pl,alice) -
high_quality(p1)

author(pl,bob)

accepted(pl)
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® ® © Markov Logic Networks

o Combine first-order logic and Markov networks
Syntax: First-order logic + Weights
Semantics: Templates for Markov networks

o Inference: KBMC + MaxWalkSat + MCMC

o Learning: ILP + Pseudo-likelihood / discriminitive
training

® ® © Summary: Undirected Approaches

o Focus on symmetric, non-causal relationships

Like directed approaches, support collective
classification
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® ® © Four SRL Approaches

o Directed Approaches
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Frame-based Undirected Models
Rule-based Undirected Models

® ® © Themes: Representation

o Basic representational elements and focus
rules: facts
frames: objects
programs: processes
o Representing domain structure
context
relational skeleton
non-probabilistic language constructs
o Representing local probabilities
noise factors
conditional probability tables
clique potentials
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® ® © Themes: Representational Issues

o Structural uncertainty
reference, exists, type, number, identity
o Combining probabilities from multiple sources
combining rules
aggregation
o Cyclicity
ruling out (stratification)
introducing time
guaranteed acyclic relations
undirected models
o Functions and infinite chains
iterative approximation

® ® ® Themes: Inference

o Inference on ground random variables
knowledge based model construction
o Inference at the first-order object level

first-order variable elimination
unification
quantification over populations

structured variable elimination
memoization

o Utilizing entity-relations structure

o Query-directed inference
backward chaining on query and evidence
lazy evaluation
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® ® ® Themes: Learning

o Learning parameters

Parameter sharing
rules apply many times
same type of object appears many times
same function is called many times

Expectation-Maximization
o Learning structure

structure search

legal models

scoring function

search operators

®® % (Goals

o By the end of this tutorial, hopefully, you will be:
1. able to distinguish among different SRL tasks

2. able to represent a problem in one of several SRL
representations

3. excited about SRL research problems and practical
applications

e Many other interesting topics that | didn’t have time
to cover...
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® ® © Conclusion

o Statistical Relational Learning
Supports multi-relational, heterogeneous domains
Supports noisy, uncertain, non-lID data
aka, real-world data!
o Differences in approaches:
rule-based vs. frame-based
directed vs. undirected
o Many common issues:
Need for collective classification and consolidation
Need for aggregation and combining rules
Need to handle labeled and unlabeled data
Need to handle structural uncertainty
etc.
o Great opportunity for combining rich logical representation
and inference and learning with hierarchical statistical
models!!
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