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o 4 SRL Approaches

o Applications and Future directions



Why SRL?

Traditional statistical machine learning approaches assume:
A random sample of homogeneous objects from single relation

Traditional ILP/relational learning approaches assume:
No noise or uncertainty in data

Real world data sets:
Multi-relational, heterogeneous and semi-structured
Noisy and uncertain

Statistical Relational Learning:

newly emerging research area at the intersection of research in
social network and link analysis, hypertext and web mining, graph
mining, relational learning and inductive logic programming

Sample Domains:

web data, bibliographic data, epidemiological data, communication
data, customer networks, collaborative filtering, trust networks,
biological data, natural language, vision



®® % \\Whatis SRL?

o Three views...



® oo View 1: Alphabet Soup
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® ® © View 2: Representation Soup

o Hierarchical Bayesian Model + Relational

Representation
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Probabilities

Add probabilities >

Add relations >
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® e @ \iew 3: Data Soup

Training Data Test Data
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®® % (Goals

o By the end of this tutorial, hopefully, you will be:
1. able to distinguish among different SRL tasks

2. able to represent a problem in one of several SRL
representations

3. excited about SRL research problems and practical
applications
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®® & SRL Tasks

o Tasks

Object Classification
Object Type Prediction
Link Type Prediction
Predicting Link Existence
Link Cardinality Estimation
Entity Resolution

Group Detection
Subgraph Discovery
Metadata Mining



® ® @ Object Prediction

o Object Classification

Predicting the category of an object based on its
attributes and its links and attributes of linked objects

e.g., predicting the topic of a paper based on the words
used in the paper, the topics of papers it cites, the
research interests of the author

o Object Type Prediction

Predicting the type of an object based on its attributes and
its links and attributes of linked objects

e.g., predict the venue type of a publication (conference,
journal, workshop) based on properties of the paper



® ® % | ink Prediction

o Link Classification

Predicting type or purpose of link based on properties of the
participating objects

e.g., predict whether a citation is to foundational work,
background material, gratuitous PC reference

o Predicting Link Existence
Predicting whether a link exists between two objects
e.g. predicting whether a paper will cite another paper

o Link Cardinality Estimation

Predicting the number of links to an object or predicting the
number of objects reached along a path from an object

e.g., predict the number of citations of a paper



® ® © More complex prediction tasks

o Group Detection

Predicting when a set of entities belong to the same group based
on clustering both object attribute values and link structure

e.g., identifying research communities

o Entity Resolution

Predicting when a collection of objects are the same, based on
their attributes and their links (aka: record linkage, identity
uncertainty)

e.g., predicting when two citations are referring to the same
paper.

o Predicate Invention
Induce a new general relation/link from existing links and paths

e.g., propose concept of advisor from co-author and financial
support

o Subgraph Identification, Metadata Mapping



® ® @ SRL Challenges

Collective Classification

Collective Consolidation

Logical vs. Statistical dependencies

Feature Construction — aggregation, selection
Flexible and Decomposable Combining Rules
Instances vs. Classes

Effective Use of Labeled & Unlabeled Data
Link Prediction

Closed vs. Open World

Challenges common to any SRL approachl!

Bayesian Logic Programs, Markov Logic Networks, Probabilistic Relational Models,
Relational Markov Networks, Relational Probability Trees, Stochastic Logic
Programming to name a few
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® ® @ Four SRL Approaches

o Directed Approaches
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Frame-based Undirected Models
Rule-based Undirected Models

o Programming Language Approaches (oops, five!)



® ® ® Emphasis in Different Approaches

o Rule-based approaches focus on facts
what is true in the world?
what facts do other facts depend on?
o Frame-based approaches focus on objects and relationships

what types of objects are there, and how are they related to each
other?

how does a property of an object depend on other properties (of
the same or other objects)?

o Directed approaches focus on causal interactions

o Undirected approaches focus on symmetric, non-causal
Interactions

o Programming language approaches focus on processes
how is the world generated?
how does one event influence another event?



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches

Markov Network Tutorial
Rule-based Undirected Models
Frame-based Undirected Models



® ® © Bayesian Networks

conditional probability table (CPT)
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Network structure encodes conditional independencies:
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® ® & BN Semantics

D SO -
conditional ocal full joint
> @ independencies + CPTs — distribution
iIn BN structure over domain
O

PW,s,m,q,l,a)=

P(W)P(s)P(m|wW)P(q |w,s)P(I |m)P(a] m,q)

o Compact & natural representation:
nodes <k parents = O(2Xn) vs. O(2") params
natural parameters



® ® © Reasoning in BNs

o Full joint distribution answers any query
P(event [ evidence)

o Allows combination of different types of reasoning:
Causal: P(Reviewer-Mood | Good-Writer)
Evidential: A(Reviewer-Mood [ not Accepted)

Intercausal: P(Reviewer-Mood [ not Accepted,
Quality)
D SO

ot

O



® ® © \/ariable Elimination

o Tocompute P(a)= ZP(W,S, m,q,l,a)

w,s,m,q,l

2 PW)P(s)P(m|w)P(q |w,s)P(I|m)P(a| mq)
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® ® © \ariable Elimination

o Tocompute P(a)= ZP(W,S, m,q,l,a)

w,s,m,q,l

2. 2 PW)P(s)P(m|w)P(q|w,s)P(I|m)P(a| maq)
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® ® © \/ariable Elimination

o To compute P(a) — ZP(W,S, m,q,l,a)

w,s,m,q,l

2 PW)P(s)P(m|w)P(q|w,s)P(alma)p P(l|m)

w.,s,m,qg

sum out |




® ® © \/ariable Elimination

o To compute P(a) = ZP(W s,m,q,l,a)

w,s,m,q,l

> P(w)P(s)P(m |w)P(q |w,s)P(a| m,q)f,(m)
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new factor



® ® © \/ariable Elimination

o To compute P(a ZP (w,s,m,q,l,a)

w,s,m,q,l

> P(s)P(a| m,q)f, m)ZP (WP(m|w)P(g|w,s)

s,m,q

multiply factors together
then sum out w




® ® © \/ariable Elimination

o To compute P(a) = ZP(W s,m,q,l,a)

w,s,m,q,l

2 P(s)P(al m,Q)fl(m)fz(m,Tq,S)

S,m,q
new factor



® ® © \/ariable Elimination

o To compute P(a) = ZP(W s,m,q,l,a)

w,s,m,q,l

P(a)



® ® @ QOther Inference Algorithms

o Exact
Junction Tree [Lauritzen & Spiegelhalter 88]
Cutset Conditioning [Pearl 87]

o Approximate
Loopy Belief Propagation [McEliece et al 98]
Likelihood Weighting [Shwe & Cooper 91]

Markov Chain Monte Carlo [eg MacKay 98]
Gibbs Sampling [Geman & Geman 84]
Metropolis-Hastings [Metropolis et al 53, Hastings 70]

Variational Methods [Jordan et al 98]



®® @ | earning BNs

Structure and

Parameters only Parameters

Complete Data Easy: counting Structure search

EM [Dempster et al 77]
Incomplete Data | or gradient descent
[Russell et al 95]

Structural EM
[Friedman 97]

See [Heckerman 98] for a general introduction



® @ ® BN Parameter Estimation

o Assume known dependency structure G

o Goal: estimate BN parameters 6
entries in local probability models,

6,, =P(X =x|Pa[X]=u)
o @ is good if it's likely to generate observed data.

1(6:.D,G) =logP(D|&,G)

o MLE Principle: Choose & so as to maximize |
o Alternative: incorporate a prior



® ® @ | earning With Complete Data

o Fully observed data: data consists of set of
instances, each with a value for all BN variables

o With fully observed data, we can compute N
= number of instances with g, W and s

and similarly for other counts

o We then estimate

— quVs
eq,vv,s :P(q |W1S) — N—

w,S



Dealing w/ missing values

Can’tcompute N 4
But can use Expectation Maximization (EM)

Given parameter values, can compute expected
counts: E[N,,.]J= > P(q'.W',s'|evidence')

instances i

this requires BN inference

Given expected counts, estimate parameters:
E[Ng sl

E[Ng ]

Begin with arbitrary parameter values

Iterate these two steps

Converges to local maximum of likelihood

9 W S — P(q |W1S) —

q



® ® ® Structure search

o Begin with an empty network
o Consider all neighbors reached by a search operator
that are acyclic
add an edge
remove an edge
reverse an edge

o For each neighbor
compute ML parameter values 6

S

compute score(s) = logP(D|s,8.)+logP(s)

*

o Choose the neighbor with the highest score
o Continue until reach a local maximum



® ® @ Mini-BN Tutorial Summary

o Representation — probability distribution factored
according to the BN DAG

o Inference — exact + approximate
o Learning — parameters + structure



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



O 0O 0O 0O 0O 0O 0O 0O 0O 0 O

Directed Rule-based Flavors

Goldman & Charniak [93]

Breese [92]

Probabilistic Horn Abduction [Poole 93]
Probabilistic Logic Programming [Ngo & Haddawy 96]
Relational Bayesian Networks [Jaeger 97]
Bayesian Logic Programs [Kersting & de Raedt 00]
Stochastic Logic Programs [Muggleton 96]

PRISM [Sato & Kameya 97]

CLP(BN) [Costa et al. 03]

Logical Bayesian Networks [Fierens et al 04, 05]
etc.



® ® © |ntuitive Approach

In logic programming,
accepted(P) :- author(P,A), famous(A).

means
For all P,A if A is the author of P and A is famous, then P
IS accepted

This is a categorical inference
But this may not be true in all cases



® ® © Fudge Factors

Use
accepted(P) :- author(P,A), famous(A). (0.6)

This means

For all P,A if A is the author of P and A is famous, then P
Is accepted with probability 0.6

But what does this mean when there are other
possible causes of a paper being accepted?

e.g. accepted(P) :- high_quality(P). (0.8)



® ® @ |ntuitive Meaning

accepted(P) :- author(P,A), famous(A). (0.6)
means

For all P,A if A is the author of P and A is famous, then P
Is accepted with probability 0.6, provided no other
possible cause of the paper being accepted holds

If more than one possible cause holds, a combining
rule is needed to combine the probabilities



® ® © Meaning of Disjunction

In logic programming
accepted(P) :- author(P,A), famous(A).
accepted(P) :- high_quality(P).
means

For all P,A if A is the author of P and A is famous, or if P
Is high quality, then P is accepted



® ® © Probabilistic Disjunction

Now
accepted(P) :- author(P,A), famous(A). (0.6)
accepted(P) :- high_quality(P). (0.8)
means
For all P,A, if (A is the author of P and A is famous
successfully cause P to be accepted) or (P is high

quality successfully causes P to be accepted), then P
IS accepted.

If A is the author of P and A is famous, they successfully
cause P to be accepted with probability 0.6.

If P is high quality, it successfully causes P to be
accepted with probability 0.8.

o All causes act independently to produce effect (causal independence)
o Leak probability: effect may happen with no cause
o e.g. accepted(P). (0.1)




® & © Computing Probabillities

o What is P(accepted(pl)) given that Alice is an
author and Alice is famous, and that the paper is
high quality, but no other possible cause is true?

P = P(atleastone true cause succeeds)
= 1-P(alltrue possible causes fail)

= 1- H(1 - psuccess(i ))

true possible causes |

-  1-(1-0.6)(1-0.8)(1-0.1)=0.928

leak




® ® ® Combination Rules

o Other combination rules are possible
o e.g., max

P (effect) = max

: . IMsuccess (I )
true possible causes i

o In our case,
P(accepted(pl)) = max {0.6,0.8,0.1} = 0.8
o Harder to interpret in terms of logic program




®e o KBMC

o Knowledge-Based Model Construction (KBMC)
[Wellman et al. 92, Ngo & Haddawy 95]

o Method for computing more complex probabilities
o Construct a Bayesian network, given a query Q
and evidence E

qguery and evidence are sets of ground atoms, i.e.,
predicates with no variable symbols
e.g. author(pl,alice)

o Construct network by searching for possible
proofs of the query and the variables

o Use standard BN inference techniques on
constructed network



® e o KBMC Example

smart(alice). (0.8)

smart(bob). (0.9)

author(p1,alice). (0.7)

author(pl,bob). (0.3)

high_quality(P) :- author(P,A), smart(A). (0.5)
high_quality(P). (0.1)

accepted(P) :- high_quality(P). (0.9)

Query is accepted(pl).
Evidence is smart(bob).



® & ® Backward Chaining

Start with evidence variable smart(bob)

smart(bob)



® & ® Backward Chaining

Rule for smart(bob) has no antecedents — stop
backward chaining

smart(bob)



® & ® Backward Chaining

Begin with query variable accepted(p1l)

smart(bob)

accepted(pl)



® & ® Backward Chaining

Rule for accepted(pl) has antecedent high _quality(pl)

add high_quality(p1l) to network, and make parent of
accepted(pl)

smart(bob)

high_quality(p1)
accepted(pl)




® & ® Backward Chaining

All of accepted(pl)’s parents have been found —
create its conditional probability table (CPT)

smart(bob)

high_quality(p1)
® high_quality(p1)

accepted(pl)

acceptedm
hq 0.9 0.1
hq 0o 1




® & ® Backward Chaining

high_quality(p1) :- author(p1,A), smart(A) has two
groundings: A=alice and A=bob

smart(bob)

high_quality(p1)
accepted(pl)




® & ® Backward Chaining

For grounding A=alice, add author(p1,alice) and
smart(alice) to network, and make parents of

high_quality(p1)

smart(alice)

author(p1,alice)

high_quality(p1)

accepted(pl)

smart(bob)




® & ® Backward Chaining

For grounding A=bob, add author(p1,bob) to network.
smart(bob) is already in network. Make both
parents of high_quality(p1l)

author(p1,alice)

high_quality(p1)

accepted(pl)

smart(bob)
author(p1,bob)




® & ® Backward Chaining

Create CPT for high_quality(p1) — make noisy-or

author(p1,alice)

high_quality(p1)

accepted(pl)

smart(bob)
author(p1,bob)




® & ® Backward Chaining

author(pl,alice), smart(alice) and author(p1,bob)
have no antecedents — stop backward chaining

author(p1,alice)

smart(bob)
author(p1,bob)

high_quality(p1)

accepted(pl)




® & ® Backward Chaining

o assert evidence smart(bob) =true, and compute
P(accepted(pl) | smart(bob) = true)

true

smart(bob)
author(p1,bob)

author(p1,alice)

high_quality(p1)

\ 4

accepted(pl)



Backward Chaining on Both
Query and Evidence

o Necessary, if query and evidence have common

ancestor
\ L

o Sufficient. P(Query | Evidence) can be computed
using only ancestors of query and evidence
nodes

unobserved descendants are irrelevant



® ® ® The Role of Context

o Context is deterministic knowledge known prior to
the network being constructed

May be defined by its own logic program
Is not a random variable in the BN
o Used to determine structure of the constructed BN

If a context predicate P appears in the body of a rule
R, only backward chain on R if P is true



® ® @ Context example

Suppose author(P,A) is a context predicate,
author(p1,bob) is true, and author(p1,alice) cannot
be proven from deterministic KB (and is therefore
false by assumption)

Network is

@ No author(p1,bob) node

because it is a context predicate

@@ No smart(alice) node
because author(pl,alice) is false




®® % Semantics

o Assumption: no cycles in resulting BN

If there are cycles, cannot interpret BN as definition
of joint probability distribution
o Assuming BN construction process terminates,

conditional probability of any query given any
evidence is defined by the BN.

o Somewhat unsatisfying because

meaning of program is query dependent (depends
on constructed BN)

meaning is not stated declaratively in terms of

program but in terms of constructed network
instead



® ® © Disadvantages of Approach

o Up until now, ground logical atoms have been
random variables ranging over T,F

cumbersome to have a different random variable
for lead _author(pl,alice), lead author(pl,bob)
and all possible values of lead _author(pl,A)

worse, since lead author(p1,alice) and

lead _author(pl,bob) are different random
variables, it is possible for both to be true at the
same time



e o » DBayesian Logic Programs
[Kersting and de Raedt]

o Now, ground atoms are random variables with
any range (not necessarily Boolean)

now quality is a random variable, with values
high, medium, low

o Any probabilistic relationship is allowed
expressed in CPT

o Semantics of program given once and for all
not query dependent



® ® © Meaning of Rules in BLPs

accepted(P) :- quality(P).
means

“For all P, if quality(P) is a random variable, then
accepted(P) is a random variable”

Associated with this rule is a conditional probability
table (CPT) that specifies the probability distribution
over accepted(P) for any possible value of

qguality(P)



® ® © Combining Rules for BLPs

accepted(P) :- quality(P).
accepted(P) :- author(P,A), fame(A).

o Before, combining rules combined individual
probabilities with each other

noisy-or and max rules easy to interpret
o Now, combining rules combine entire CPTs



® ® ¢ Semantics of BLPs

o Random variables are all ground atoms that have
finite proofs in logic programs
assumes acyclicity
assumes no function symbols
o Can construct BN over all random variables
parents derived from rules
CPTs derived using combining rules

o Semantics of BLP: joint probability distribution over
all random variables

does not depend on query
o Inference in BLP by KBMC



An Issue

How to specify uncertainty over single-valued relations?
Approach 1: make lead author(P) a random variable taking
values bob, alice etc.

we can't say accepted(P) :- lead _author(P), famous(A)
because A does not appear in the rule head orin a
previous term in the body

Approach 2: make lead _author(P,A) a random variable with
values true, false

we run into the same problems as with the intuitive
approach (may have zero or many lead authors)

Approach 3: make lead author a function
say accepted(P) :- famous(lead _author(P))

need to specify how to deal with function symbols and
uncertainty over them



® ® © First-Order Variable Elimination

o [Poole 03, Braz et al 03]

o Generalization of variable elimination to first
order domains

o Reasons directly about first-order variables,
instead of at the ground level

o Assumes that the size of the population for each
type of entity is known



® ® @ | earning Rule Parameters

o [Koller & Pfeffer 97, Sato & Kameya 01]
o Problem definition:

Given a skeleton rule base consisting of rules
without uncertainty parameters

and a set of instances, each with
a set of context predicates
observations about some random variables

Goal: learn parameter values for the rules that
maximize the likelihood of the data



® ® © Basic Approach

1. Construct a network BN' for each instance i using
KBMC, backward chaining on all the observed
variables

2. Expectation Maximization (EM)
exploit parameter sharing



® ® © Parameter Sharing

o In BNs, all random variables have distinct CPTs

only share parameters between different
instances, not different random variables

o In logical approaches, an instance may contain
many objects of the same kind

multiple papers, multiple authors, multiple citations
o Parameters are shared within instances

same parameters used across different papers,
authors, citations

o Parameter sharing allows faster learning, and
learning from a single instance



® ® ® Rule Parameters & CPT Entries

o In principle, combining rules produce complicated
relationship between model parameters and CPT
entries

o With a decomposable combining rule, each node
Is derived from a single rule

Most natural combining rules are decomposable
e.g. noisy-or decomposes into set of ands followed by or



® ® ® Parameters and Counts

o Each time a node is derived from a rule r, it provides
one experiment to learn about the parameters
associated with r

o Each such node should therefore make a separate
contribution to the count for those parameters

o 6'):,u: the parameter associated with
P(X=x|Parents[X]=u) when rule r applies

o N; ; the number of times a node has value x and its
parents have value u when rule r applies



® e o EM With Parameter Sharing

o Given parameter values, compute expected
counts:

E[N;,J= > > P(X=x,Parents[X]=u]evidence')

instancesi X

where the inner sum is over all nodes derived
from rule r in BN!

o Given expected counts, estimate:
- E[N,.]
X,u
E[N, ]

o Iterate these two steps




® ® @ | earning Rule Structure

o [Kersting and De Raedt 02]

o Problem definition:

Given a set of instances, each with
context predicates
observations about some random variables

Goal: learn

a skeleton rule base consisting of rules and parameter
values for the rules

o Generalizes BN structure learning
define legal models
scoring function same as for BN
define search operators



® ® @ | egal Models

o Hypothesis space consists of all rule sets using
given predicates, together with parameter values
o A legal hypothesis:

is logically valid: rule set does not draw false
conclusions for any data cases

the constructed BN is acyclic for every instance



® ® © Search operators

o Add a constant-free atom to the body of a single
clause

o Remove a constant-free atom from the body of a
single clause

accepted(P) :- author(P,A).
accepted(P) :- quality(P).

delity add
accepted(P).

accepted(P) :- quality(P).

accepted(P) :- author(P,A), famous(A).
accepted(P) :- quality(P).



Summary: Directed Rule-based
Approaches

o Provide an intuitive way to describe how one fact
depends on other facts

o Incorporate relationships between entities

o Generalizes to many different situations

Constructed BN for a domain depends on which
objects exist and what the known relationships are
between them (context)

o Inference at the ground level via KBMC
or lifted inference via FOVE

o Both parameters and structure are learnable



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® © Frame-based Approaches

o Probabilistic Relational Models (PRMs)

Representation & Inference [Koller & Pfeffer 98,
Pfeffer, Koller, Milch &Takusagawa 99, Pfeffer 00]

Learning [Friedman et al. 99, Getoor, Friedman,
Koller & Taskar 01 & 02, Getoor 01]

o Probabilistic Entity Relation Models (PERSs)
Representation [Heckerman, Meek & Koller 04]



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models

Frame-based Directed Models
 PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

 PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® ©® Relational Schema

Review
Mood

Author

Good Writer
Smart

Length

Paper

EEEREESN Quality llllllb‘

Accepted Has Review

Author of

o Describes the types of objects and relations in the
database



® ® © Probabilistic Relational Model

Good Writer

Accepted



® ® ® Probabilistic Relational Model

Good Writer

—
( Paper.Accepted |
|
|

Paper.Quality, |
Paper.Review.Mood )

P

Accepted

\
—




® ® ® Probabilistic Relational Model

Good Writer

QM

f’f ) Py | R asssas E

f,t

t, f
\_ Ut 0.7 0.3




Relational Skeleton

-
Author

\

-
Author

é .
Paper P1 Primary Keys
Author: Al e,

| Review:R1 | ‘e,

*d Review R1

r

Paper P2

Author: Al [*=a,, :
| Review: RZ] .{ Review &]

rPaper P3 ““{ Review &]
Author: A2 HZZ
\(_Review: R2 Foreign Keys

Fixed relational skeleton o:

set of objects in each class

relations between them



® ¢ & PRM w/ Attribute Uncertainty

Paper P1
fAuthor Al Author: Al _ )
— Review: R1 Review R1
N\ < P

Paper P2
Author: Al

(Author A2

(Cood Writer

Paper P3
Author: A2
Review: R2

PRM defines distribution over instantiations of attributes



®® o A Portion of the BN

02 038
t,f | 06 04
\_ Ut 0.7 0.3

P3.Accepted



®® o A Portion of the BN

QM [P(A1Q, M)
f,f1 01 09

f,t | 02 0.8

t,f | 06 04
t,t [ 0.7 0.3

P3.Accepted




® ¢ © PRM: Aggregate Dependencies




® ¢ © PRM: Aggregate Dependencies

Q.M | P(A|Q, M)
f,f | 0.1 0.9
f,t | 0.2 0.8

t,f | 0.6 0.4
(Paperﬂ 0.7 0.3
@E) O\ e b )
e

sum, min, max, )
avg, mode, count




® e PRM with AU Semantics

P Review
S e B

: _JPaper | :
: e, lP1 Review

........ . Author o R2

A2

Review Paper |e*
o [Paper ],

PRM + relational skeleton

probability distribution over completions I:

P(lc,5,0)=]][]P(x.Alparents g _(x.A))

Xeo X.A
7 AN
Objects Attributes



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models

Frame-based Directed Models
 PRMs w/ Attribute Uncertainty
» Inference in PRMs
* Learning in PRMs

 PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® ¢ PRM Inference

o Simple idea: enumerate all attributes of all objects
o Construct a Bayesian network over all the attributes



® ® © |Inference Example

Review
a®
Skeleton - R1
aper .
o’ g pif¥e.,
“‘ - ......

... .
* x5, JReview
o’ R2
Author Le** —

All *e,

o, )

'.,. . Review
| )
...O ---““‘ R3
*« JPaper sus®
Q .....

..... .
"aa, JReview
R4

Query is P(Al.good-writer)
Evidence is Pl.accepted =T, P2.accepted = T



® ® © PRM Inference: Constructed BN

@

<R1 Mood R2 MOOCD
RJ Length R2. Leng@

1.A {
( 008,0@ <f\’ 2 Mood Y /l//0 OD
R.S’ Length R4 Length

2. Accepted




® ® ¢ PRM Inference

o Problems with this approach:
constructed BN may be very large
doesn’t exploit object structure

o Better approach:
reason about objects themselves
reason about whole classes of objects

o In particular, exploit:
reuse of inference
encapsulation of objects



® ® © PRM Inference: Interfaces

Variables pertaining
to R2: inputs and
iInternal attributes

41.Good Writep

__R1.Mood 2 Mood >

R1.Length R2.Length

B1.Accepted




® ® ®“ PRM Inference: Interfaces

Interface:
imported and
exported
attributes

41.Good Writep

2 MOOCD

RZ2.Length

__RI1.Mood

R1.Length

Q1. Accepted




® ¢ ® PRM Inference:.Encapsulation

w R1 and R2 are
encapsulated

1 Good Wirite inside P1
<R1 Mood R2 MoocD
RJ Length RZ Lengl‘/?\
1.Accepte -—
1. Accepted '\R&’ Mood R4, /l/looa’
R.S’ Length R4 Lengl‘h

B2, Accepted




®® ® PRM Inference: Reuse

Cp1.Smart

1 Good Write
<R1 Mood R MOOCD
RJ Length R2. Leng@
1.Accepte
BLAccepted <R3 Mood R4. /|//000'
R3 Length R4 Lengl‘/?

(A cce,o)




Structured Variable Elimination

Author 1

ﬁoaa’ Write

Paper-1




Structured Variable Elimination

Author 1

ﬁoaa’ Write

Paper-1




Structured Variable Elimination
Paper 1

4z smart

41.Good Write

‘

P1.Accepted




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

‘

P1.Accepted




® ® © Structured Variable Elimination

Review 2

RZ2.Length




® ® © Structured Variable Elimination

Review 2

1.Good @




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

‘

P1.Accepted




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

P1.Accepted




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

P1.Accepted




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

‘

P1.Accepted




® ® © Structured Variable Elimination
Paper 1

4z smart

41.Good Write

‘

P1.Accepted> True




® ® © Structured Variable Elimination
Paper 1




Structured Variable Elimination

Author 1

ﬁoaa’ Write

Paper-1




® ® © Structured Variable Elimination

Author 1




® ® © Structured Variable Elimination

Author 1




® ® © Structured Variable Elimination

; 1.Good Wr/'z‘eb

Author 1




® ® © Structured Variable Elimination

Author 1

1.Good @




® ® ©® Benefits of SVE

o Structured inference leads to good elimination
orderings for VE

interfaces are separators
finding good separators for large BNs is very hard

therefore cheaper BN inference
o Reuses computation wherever possible



®® ° | imitations of SVE

o Does not work when encapsulation breaks down

Reviewer

. Paper T L R2 .
Author | jamwun=®®" P1 "... — R3 is not
[ [ J
Al **a,, JReviewer encapsulated

Yau
'..... Paper --“‘llll R3 ) .
. . — inside P2
— ....'..
L

Reviewer
R4

o But when we don’t have specific information about the
connections between objects, we can assume that
encapsulation holds

l.e., if we know P1 has two reviewers R1 and R2 but they are not
named instances, we assume R1 and R2 are encapsulated

IR

o Cannot reuse computation when different objects have different
evidence



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models

Frame-based Directed Models
 PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

 PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® ¢ | earning PRMs w/ AU

Author
Database R
. -
Paper

D= <=

Author
@ =
: P—
Paper
> Review . .
;"‘" = « Parameter estimation
e Structure selection
Relational

Schema



® ® © ML Parameter Estimation

Review

Miood P(A | Q. M)
Length > o
?0?
? 7
? 79 /

where N, oirpa isthe number of accepted,
low quality papers
whose reviewer was in a poor mood



® ® © ML Parameter Estimation

Review
Mood

Query for counts:

COUﬂt [TC P.Quality [

R.Mood
P.Accepted

Review
table

P(A | Q, M))
?

DN ) Y

2

Paper ] ]

table




® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
legal models
scoring models
searching model space



® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
» legal models
scoring models
searching model space



® ® @ | egal Models

o PRM defines a coherent probability model over a
skeleton o if the dependencies between object
attributes is acyclic

(Paper
author-of P1

Researcher |  _  ieseet®tT Accepted
Prof. Gump [/ es==="""" ved Paper ™
Reputation | =M ressserl,,,, T P2
high Accepted
— Yes )

How do we guarantee that a PRM is acyclic
for every skeleton?



® ® © Attribute Stratification

PRM
dependency
structure S

Paper.Accepted
if Researcher.Reputation
depends directly on Paper.Accepted
Researcher.Reputatiog

Attribute stratification:
dependency graph acyclic = acyclic for any o

dependency
01 > araph

cycles along guaranteed acyclic relations



® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components
legal models
» scoring models — same as BN
searching model space



® ® © Structure Selection

o ldea:
define scoring function
do local search over legal structures

o Key Components:
legal models
scoring models
searching model space



® ® © Searching Model Space

Phase 0: consider only dependencies within a class

Author Paper Review
>

S >

>

uthor| 1 _ L
Aut. .
&1, Potential-Parents(R.A) = | JR.B
[ R.Bedescriptive-attributes (R)

Author

Paper Review
> S <
S <

—




® ® ® Phased Structure Search

Phase 1: consider dependencies from “neighboring”
classes, via schema relatiQns,

Paper : Review
R -
ity ¥ EEEENZ P\ddp\ O(e
P v B revewrsoon el S
= _
& Potential-Parents(R.A) = | JscC
— S.Cedescriptive—attributes (R><iS )

|
| .
Paper m Review
AP« s
>




® ® ® Phased Structure Search

Phase 2: consider dependencies from “further”
classes, via relation chains

[ ]
Authorl'l - | =




® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models

Frame-based Directed Models
 PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

 PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



Reminder: PRM w/ AU Semantics

0
Author
>
Paper

Author K R1
Al

Review

- Paper M

..: Review
Author o** R2
A2

L 4

.
Paper | ¢*
— 5 Review
? " - _Rs

PRM

P3

+ relational skeleton o

probability distribution over completions I:

P(lc,5,0)=]][]P(x.Alparents g _(x.A))

Xeo X.A
” \

Objects Attributes



® ® » Kinds of structural uncertainty

o How many objects does an object relate to?
how many Authors does Paperl have?

o Which object is an object related to?
does Paperl cite Paper2 or Paper3?
o Which class does an object belong to?
is Paperl a JournalArticle or a ConferencePaper?
o Does an object actually exist?
o Are two objects identical?



® ® @ Structural Uncertainty

o Motivation: PRM with AU only well-defined when the
skeleton structure is known

o May be uncertain about relational structure itself

o Construct probabilistic models of relational structure
that capture structural uncertainty

o Mechanisms:

Reference uncertainty
Existence uncertainty
Number uncertainty
Type uncertainty
|ldentity uncertainty



® ® » Citation Relational Schema

Author

Institution
Research Area

|
- Wrote

.Illllll.




Attribute Uncertainty

Author
@ P( Institution | ]

Research Area)
Research Area

P( Topic |
Paper.Author.Research Area

P(WordN | TopicZ|
-




® ® © Reference Uncertainty

- S
— Bibliography — —
— ey — = —
2. - ==

_____ ’) _—
3. \\ ge—
Scientific Paper ~—— | |—
\3

Document Collection



® & © PRM w/ Reference Uncertainty

Paper s Paper
Topic . . : '
Woprds : Cites : ropie
ek Cltlng E WOrdS
Cited "-ij

Dependency model for foreign keys

Nailve Approach: multinomial over primary key
* noncompact
* limits ability to generalize



® ® © Reference Uncertainty Example

E

E s

: p2 Topic

Topic (paper

: \ Theoj p1

§ :
. Theory C2

> Paper.Topic = Theory

Citing 03 0.7

Cites C1 CZ]
Cited




® ® © Reference Uncertainty Example

E

E s

: p2 Topic

Topic (paper

+ |\ Theo P6

§ :
. Theory C2

> Paper.Topic = Theory

E._Paper.Topic = Al

Paper
\

Topic ] -
Worde Cites ﬂoplc Cl C2
C|t|ng T eory 01 09
- Cited Al\AI 099001,




® ® © |Introduce Selector RVs

P2.Topic)
P3.Topic>
P4.Topic>
P5.Topic)
P6.Topic>

Citesl.Selector

Citesl1.Cited

CP1.Topic

Cites2.Selector
}
(Cites2.Cited

Introduce Selector RV, whose domain is {C1,C2}
The distribution over Cited depends on all of the
topics, and the selector




®® % PRMs w/ RU Semantics

Paper =+ Paper
Top! : | cites | 3.4 Topic
Words || & i
°° Iz cited,d"= | Words
Citin.g

PRM RU entity skeleton o

PRM-RU + entity skeleton o
= probability distribution over full instantiations |



®® ¢ | earning PRMs w/ RU

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:
legal models

model new dependencies
scoring models

unchanged
searching model space

new operators



®® @ | egal Models




® ® @ | egal Models

@sl.Selector
}

Citesl1.Cited

R1.Mood ~P3.Importand

P1.Accepted P4.] mpor@

When a node’s parent is defined using an uncertain
relation, the reference RV must be a parent of the
node as well.




® ® © Structure Search

Paper I._ « [ Paper
Topic « | Cites |2 | Topic [t
Cited o= Institution

Cited




® ® @ Structure Search: New Operators

Paper I Paper

Topic Cites Topic

Words Citi ng Words Author
Cited Institution

Cited

- s




® ® @ Structure Search: New Operators

Paper I._ « [ Paper
Topic = | Cites |a | Topic [
Cited o= Institution

Cited




® 6% PRMs w/ RU Summary

o Define semantics for uncertainty over which entities
are related to each other

o Search now includes operators Refine and
Abstract for constructing foreign-key dependency
model

o Provides one simple mechanism for link uncertainty



® & @ Existence Uncertainty

Document Collection Document Collection



® ® © PRM w/ Exists Uncertainty

P&p@l’ ."E hmue Paper
Topic : : | Topic
Words Cites * | Words

' Exists{lj

Dependency model for existence of relationship




® ® @ Exists Uncertainty Example

Paper
Topic
Words

‘| Paper

; - Topic
Cites P
. _ Words
EXIsts
Citer.Topic  Cited.Topic False Tk
Theory Theory 0.995 0005
Theory Al 0.999 0001
Al Theory 0.997 0003
\ Al Al 0.993 O%




® ® © |ntroduce Exists RVs

Author #1 Author #2
OO,
Paper#1l (ropic )  Paper#?2 Cropic ) Cropic )Paper#3

#1-#3 #1-#2 #2-#1 #3-#1 #2-#3 #H3-#2



® ® © |ntroduce Exists RVs

Author #1 Author #2

OCHEL,
Paper#1l (ropic )  Paper#?2 Cropic ) Cropic )Paper#3

&S

Cerits 3

#1-#3 #1-#2 #2-#1 #3-#1 #2-#3 #H3-#2

K




®®® PRMs w/ EU Semantics

PRM EU object skeleton &

PRM-EU + object skeleton o
— probability distribution over full instantiations I



®® ¢ | earning PRMs w/ EU

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:
legal models

model new dependencies
scoring models

unchanged
searching model space

unchanged



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models

Frame-based Directed Models
 PRMs w/ Attribute Uncertainty
* Inference in PRMs
* Learning in PRMs

 PRMs w/ Structural Uncertainty

« PRMs w/ Class Hierarchies

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® © PRMs with classes

o Relations organized in a class hierarchy
Venue

/ N\

Journal Conference

o Subclasses inherit their probability model from superclasses
o Instances are a special case of subclasses of size 1

o As you descend through the class hierarchy, you can have
richer dependency models
e.g. cannot say Accepted(P1) <- Accepted(P2) (cyclic)
but can say Accepted(JournalP1) <- Accepted(ConfP2)



® ® @ Type Uncertainty

o Is 15t-Venue a Journal or Conference ?
o Create 1%-Journal and 1st-Conference objects

o Introduce Type(1%-Venue) variable with possible
values Journal and Conference

o Make 15--Venue equal to 1st-Journal or 15t
Conference according to value of Type(1--Venue)



®® @ | earning PRM-CHs

Database:
Instance I

Vote
[
| | o EEENR
TVProgram * Class hierarchy provided
S
== | Relational Learn class hierarchy
e Schema




®® % | earning PRMs w/ CH

o ldea:
define scoring function
do phased local search over legal structures

o Key Components:

legal models
model new dependencies

scoring models
unchanged

searching model space
new operators



® ® © Guaranteeing Acyclicity w/ Subclasses

Journal
Paper Topic
Topic Quality

Qualj Accepted Conf-Paper
Accep@ Topic
Quality
Accepted
. Journal.Accepteg
aper.Acceptal ‘,
Conf-Paper.Accepted)

)

Paper.Class



®® @ | earning PRM-CH

o Scenario 1: Class hierarchy is provided

o New Operators
Specialize/Inherit

/ Accepted ., 4:

Accepted ;,,,as Accepteda,mc e Accepted Workshop




® ® @ | earning Class Hierarchy

o Issue: partially observable data set
o Construct decision tree for class defined over
attributes observed in training set

o New operator
Split on class attribute
Related class attribute

Paper.Venue

journal :: ™~ workshop
conlerence ~

class1 class3
Paper.Author.Fame

higy lmedium \W

class4 classb class6



® ® ® PRMs w/ Class Hierarchies

Allow us to:

o Refine a "heterogenous” class into more
coherent subclasses

o Refine probabilistic model along class
hierarchy

Can specialize/inherit CPDs
Construct new dependencies that were
originally “acyclic”

Provides bridge from class-based model
to Instance-based model



Summary: Directed Frame-based
Approaches

o Focus on objects and relationships

what types of objects are there, and how are they
related to each other?

how does a property of an object depend on other
properties (of the same or other objects)?

o Representation support
Attribute uncertainty
Structural uncertainty
Class Hierarchies

o Efficient Inference and Learning Algorithms



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® ® Markov Networks

clique potential

Authorl Author? F2 F4 | ¢(F2, F4)\
Fame Fame 2 f4 0.6
2 4 0.3
Authord —
Fame 2 0.3
2 4 1.5
nodes = domain variables \ /
edges = mutual influence parameters measure

compatibility of values

Network structure encodes conditional independencies:
(A1 Fame, A4 Fame | A2 Fame, A3 Fame)



® ® ® Markov Network Semantics

CED—CE22 N
conditional local full joint
CED—CED independencies +  clique = distribution
in MN structure potentials over domain

P(fl,f2,f3,f4)=%¢12(f1, f2)p(f1, 13)p,,(f2, f4)p, (3, 4)

where Z is a normalizing factor that ensures that the
probabilities sum to 1

Good news: no acyclicity constraints
Bad news: global normalization (1/Z)



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® © Advantages of Undirected Models

o Symmetric, non-causal interactions
Web: categories of linked pages are correlated
Social nets: individual correlated with peers

ek = 304 @ees e e GrdEed
=
om Mitchell

Cannot introduce direct edges because n
of cycles ==

o Patterns involving multiple entities
Web: “triangle” patterns
Social nets: transitive relations




® ® ©® Relational Markov Networks

o Locality:
Local probabilistic dependencies given by relational links

o Universals:
Same dependencies hold for all objects linked in a particular pattern

Template potential

Author? Y
Area

Topic

Authorl \
Area 7172 | §(T1,T2)
Al Al 1.8
Venue Essnmnmn®
o TH Al 0.2
Paper2 TH TH 1.5 /




®® % RMNSs

o Semantics
Instantiated RMN — MN
= variables: attributes of all objects
« dependencies: determined by links & RMN

o Learning
Discriminative training
Max-margin Markov networks
Associative Markov networks

o Collective classification:

Classifies multiple entities and links
simultaneously

Exploits links & correlations between related
entities



® ® © (Collective Classification Overview

Training Data Relational
Markov
L . Network
=" NS
A Apprqx.
Learning
tModel S
Structure Q
Conclusions
New Data Approx.
Inference

Example:

o Train on one labeled conference/venue
o Predict labels on a new conference given papers and links



® ® ® Maximum Likelihood

o

0,.X, 0;.Y™

0,-X, O Y™

N
f(X,y)

Estimation Classification

maXimizeW argmaxy
log P,,(D.y*, D.x) P.(D.y | D'.X)

We don’t care about the joint
distribution P(D.X=x, D.Y=y%*)



® ® © Maximum Conditional Likelihood

o

0,.X, 0;.Y™
Estimation Classification

0,-X, O Y™

N T maximize,,, argmax,,
f(x.y) log P,,(D.y* | D.X) P,(D.y | D'.x)

[Lafferty et al '01]



®® @ | earning RMNs

Template potential ¢

. EEE \
Intelllgence/Grade @ ‘ ‘ | \
d |

CA BY
BC ==X

BB g
BA | \
AC |

Difficulty ~ /sssssass a

Intelligence—"""—Grade

(Y1, Y,) = eXP{Wan - Taa (Y Vo) +oit W - T (V11 Y2))
logP, (D.Y |D.X)=w-f(D.Y,D.X)—logZ(D.X)

V,,logP, (DY | D.X) =f(DY,D.X)~E; ov0x,f(DY,D.X)



®® @ | earning RMNs

Maximize L = log P(

easy / hard A

B BCGrade

C

U

Grade

/ )
low / high ﬂRegl.Grge,Regz.Grade)
/CC \
1]

Intelligence ¢ ‘ f ' 15 -
Intelligence
oL
= 2‘ f a,) -
Wan gl’gzeDAA(gl J,)

> fa(9:,9,)P(9,, 9, | D.Difficulty)

0:.9,€D



® ® @ Four SRL Approaches

o Directed Approaches
BN Tutorial
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches
Markov Network Tutorial
Frame-based Undirected Models
Rule-based Undirected Models



® ® © Markov Logic Networks

o [Richardson and Domingos 03,Singla & Domingos 05, Kok &
Domingos 05]

o A Markov Logic Network (MLN) is a set of pairs (F, w) where
F is a formula in first-order logic
w is a real number

o Together with a finite set of constants,
it defines a Markov network with

One node for each grounding of each predicate in the MLN

One feature for each grounding of each formula F in the MLN,
with the corresponding weight w



®® & Example of an MLN
15 || VYXxauthor(x, p) Asmart(x) = high_quality(p)
1.1 || Vxhigh _quality(p) = accepted(p)
1.2 || VX,yco_author(x,y)= (smart(x) R smart(y))
00 VX, y 3p author(x, p) A author(y, p) = co_author(x, y)




®® & Example of an MLN
15 || VYXxauthor(x, p) Asmart(x) = high_quality(p)
1.1 || Vxhigh _quality(p) = accepted(p)
1.2 || VX,yco_author(x,y)= (smart(x) R smart(y))
00 VX, y 3p author(x, p) A author(y, p) = co _author(x, y)

Suppose we have constants: alice, bob and p1




®® & Example of an MLN

15 || VYXxauthor(x, p) Asmart(x) = high_quality(p)

1.1 || Vxhigh _quality(p) = accepted(p)

1.2 || VX,yco_author(x,y)= (smart(x) R smart(y))

00 VX, y 3p author(x, p) A author(y, p) = co_author(x, y)

Suppose we have constants: alice, bob and p1

@hor(bo@ co_author(alic@
co_author(alice@ co_author(bob,bob)

smart(bob)

i

i

author(pl,bob)

author(pl,alice)

high_quality(pl)

accepted(pl)



®® & Example of an MLN

15 || VYXxauthor(x, p) Asmart(x) = high_quality(p)

1.1 || Vxhigh _quality(p) = accepted(p)

1.2 || VX,yco_author(x,y)= (smart(x) R smart(y))

00 VX, y 3p author(x, p) A author(y, p) = co_author(x, y)

Suppose we have constants: alice, bob and p1

co_author(alice@ @hor(bob,bob)

smart(bob)
author(pl,bob)

high_quality(pl)
accepted(pl)

author(pl,alice)




®® & Example of an MLN

15 || VYXxauthor(x, p) Asmart(x) = high_quality(p)

1.1 || Vxhigh _quality(p) = accepted(p)

1.2 || VX,yco_author(x,y)= (smart(x) R smart(y))

00 VX, y 3p author(x, p) A author(y, p) = co_author(x, y)

Suppose we have constants: alice, bob and p1

@hor(bob,alice) l &author(alic@

co_author(alice@ . co_author(bob,bob)

smart(alice) smart(bob)
author(pl,alice) author(p1,bob)
high_quality(pl)

accepted(pl)




® ® © Markov Logic Networks

o Combine first-order logic and Markov networks
Syntax: First-order logic + Weights
Semantics: Templates for Markov networks

o Inference: KBMC + MaxWalkSat + MCMC

o Learning: ILP + Pseudo-likelihood / discriminitive
training



® ® © Summary: Undirected Approaches

o Focus on symmetric, non-causal relationships

Like directed approaches, support collective
classification



® ® @ Four SRL Approaches

o Directed Approaches
Rule-based Directed Models
Frame-based Directed Models

o Undirected Approaches

Frame-based Undirected Models
Rule-based Undirected Models



® ® © Themes: Representation

o Basic representational elements and focus
rules: facts
frames: objects
programs: processes
o Representing domain structure
context
relational skeleton
non-probabilistic language constructs
o Representing local probabilities
noise factors
conditional probability tables
clique potentials



® ® © Themes: Representational Issues

o Structural uncertainty
reference, exists, type, number, identity
o Combining probabilities from multiple sources
combining rules
aggregation
o Cyclicity
ruling out (stratification)
iIntroducing time
guaranteed acyclic relations
undirected models
o Functions and infinite chains
iterative approximation



® ® ® Themes: Inference

o Inference on ground random variables
knowledge based model construction

o Inference at the first-order object level

first-order variable elimination
unification
quantification over populations

structured variable elimination
memoization

o Utilizing entity-relations structure

o Query-directed inference
backward chaining on query and evidence
lazy evaluation



® ® © Themes: Learning

o Learning parameters

Parameter sharing
rules apply many times
same type of object appears many times
same function is called many times

Expectation-Maximization
o Learning structure

structure search

legal models

scoring function

search operators



®® % (Goals

o By the end of this tutorial, hopefully, you will be:
1. able to distinguish among different SRL tasks

2. able to represent a problem in one of several SRL
representations

3. excited about SRL research problems and practical
applications

e Many other interesting topics that | didn’t have time
to cover...



® ® @ Conclusion

o Statistical Relational Learning
Supports multi-relational, heterogeneous domains
Supports noisy, uncertain, non-IID data
aka, real-world data!

o Differences in approaches:
rule-based vs. frame-based
directed vs. undirected

o Many common issues:
Need for collective classification and consolidation
Need for aggregation and combining rules
Need to handle labeled and unlabeled data
Need to handle structural uncertainty
etc.
o Great opportunity for combining rich logical representation

and inference and learning with hierarchical statistical
models!!
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